Limits...
Genetic diversity analysis among male and female Jojoba genotypes employing gene targeted molecular markers, start codon targeted (SCoT) polymorphism and CAAT box-derived polymorphism (CBDP) markers.

Heikrujam M, Kumar J, Agrawal V - Meta Gene (2015)

Bottom Line: Comparatively, CBDP markers proved to be more effective than SCoT markers in terms of percentage polymorphism as the former detecting an average of 53.4% and the latter as 49.4%.The Polymorphic information content (PIC) value and marker index (MI) of CBPD were 0.43 and 1.10, respectively which were higher than those of SCoT where the respective values of PIC and MI were 0.38 and 1.09.During the present investigation, CBDP markers proved more informative in studying genetic diversity among Jojoba.

View Article: PubMed Central - PubMed

Affiliation: Department of Botany, University of Delhi, Delhi 110007, India.

ABSTRACT
To detect genetic variations among different Simmondsia chinensis genotypes, two gene targeted markers, start codon targeted (SCoT) polymorphism and CAAT box-derived polymorphism (CBDP) were employed in terms of their informativeness and efficiency in analyzing genetic relationships among different genotypes. A total of 15 SCoT and 17 CBDP primers detected genetic polymorphism among 39 Jojoba genotypes (22 females and 17 males). Comparatively, CBDP markers proved to be more effective than SCoT markers in terms of percentage polymorphism as the former detecting an average of 53.4% and the latter as 49.4%. The Polymorphic information content (PIC) value and marker index (MI) of CBPD were 0.43 and 1.10, respectively which were higher than those of SCoT where the respective values of PIC and MI were 0.38 and 1.09. While comparing male and female genotype populations, the former showed higher variation in respect of polymorphic percentage and PIC, MI and Rp values over female populations. Nei's diversity (h) and Shannon index (I) were calculated for each genotype and found that the genotype "MS F" (in both markers) was highly diverse and genotypes "Q104 F" (SCoT) and "82-18 F" (CBDP) were least diverse among the female genotype populations. Among male genotypes, "32 M" (CBDP) and "MS M" (SCoT) revealed highest h and I values while "58-5 M" (both markers) was the least diverse. Jaccard's similarity co-efficient of SCoT markers ranged from 0.733 to 0.922 in female genotypes and 0.941 to 0.746 in male genotype population. Likewise, CBDP data analysis also revealed similarity ranging from 0.751 to 0.958 within female genotypes and 0.754 to 0.976 within male genotype populations thereby, indicating genetically diverse Jojoba population. Employing the NTSYS (Numerical taxonomy and multivariate analysis system) Version 2.1 software, both the markers generated dendrograms which revealed that all the Jojoba genotypes were clustered into two major groups, one group consisting of all female genotypes and another group comprising of all male genotypes. During the present investigation, CBDP markers proved more informative in studying genetic diversity among Jojoba. Such genetically diverse genotypes would thus be of great significance for breeding, management and conservation of elite (high yielding) Jojoba germplasm.

No MeSH data available.


Dendrogram generated using UPGMA analysis of the SCoT dataset of 39 genotypes (22 females and 17 males) showing genetic relationships among Jojoba genotypes.
© Copyright Policy - CC BY-NC-ND
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4477110&req=5

f0005: Dendrogram generated using UPGMA analysis of the SCoT dataset of 39 genotypes (22 females and 17 males) showing genetic relationships among Jojoba genotypes.


Genetic diversity analysis among male and female Jojoba genotypes employing gene targeted molecular markers, start codon targeted (SCoT) polymorphism and CAAT box-derived polymorphism (CBDP) markers.

Heikrujam M, Kumar J, Agrawal V - Meta Gene (2015)

Dendrogram generated using UPGMA analysis of the SCoT dataset of 39 genotypes (22 females and 17 males) showing genetic relationships among Jojoba genotypes.
© Copyright Policy - CC BY-NC-ND
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4477110&req=5

f0005: Dendrogram generated using UPGMA analysis of the SCoT dataset of 39 genotypes (22 females and 17 males) showing genetic relationships among Jojoba genotypes.
Bottom Line: Comparatively, CBDP markers proved to be more effective than SCoT markers in terms of percentage polymorphism as the former detecting an average of 53.4% and the latter as 49.4%.The Polymorphic information content (PIC) value and marker index (MI) of CBPD were 0.43 and 1.10, respectively which were higher than those of SCoT where the respective values of PIC and MI were 0.38 and 1.09.During the present investigation, CBDP markers proved more informative in studying genetic diversity among Jojoba.

View Article: PubMed Central - PubMed

Affiliation: Department of Botany, University of Delhi, Delhi 110007, India.

ABSTRACT
To detect genetic variations among different Simmondsia chinensis genotypes, two gene targeted markers, start codon targeted (SCoT) polymorphism and CAAT box-derived polymorphism (CBDP) were employed in terms of their informativeness and efficiency in analyzing genetic relationships among different genotypes. A total of 15 SCoT and 17 CBDP primers detected genetic polymorphism among 39 Jojoba genotypes (22 females and 17 males). Comparatively, CBDP markers proved to be more effective than SCoT markers in terms of percentage polymorphism as the former detecting an average of 53.4% and the latter as 49.4%. The Polymorphic information content (PIC) value and marker index (MI) of CBPD were 0.43 and 1.10, respectively which were higher than those of SCoT where the respective values of PIC and MI were 0.38 and 1.09. While comparing male and female genotype populations, the former showed higher variation in respect of polymorphic percentage and PIC, MI and Rp values over female populations. Nei's diversity (h) and Shannon index (I) were calculated for each genotype and found that the genotype "MS F" (in both markers) was highly diverse and genotypes "Q104 F" (SCoT) and "82-18 F" (CBDP) were least diverse among the female genotype populations. Among male genotypes, "32 M" (CBDP) and "MS M" (SCoT) revealed highest h and I values while "58-5 M" (both markers) was the least diverse. Jaccard's similarity co-efficient of SCoT markers ranged from 0.733 to 0.922 in female genotypes and 0.941 to 0.746 in male genotype population. Likewise, CBDP data analysis also revealed similarity ranging from 0.751 to 0.958 within female genotypes and 0.754 to 0.976 within male genotype populations thereby, indicating genetically diverse Jojoba population. Employing the NTSYS (Numerical taxonomy and multivariate analysis system) Version 2.1 software, both the markers generated dendrograms which revealed that all the Jojoba genotypes were clustered into two major groups, one group consisting of all female genotypes and another group comprising of all male genotypes. During the present investigation, CBDP markers proved more informative in studying genetic diversity among Jojoba. Such genetically diverse genotypes would thus be of great significance for breeding, management and conservation of elite (high yielding) Jojoba germplasm.

No MeSH data available.