Limits...
Burkholderia phytofirmans PsJN induces long-term metabolic and transcriptional changes involved in Arabidopsis thaliana salt tolerance.

Pinedo I, Ledger T, Greve M, Poupin MJ - Front Plant Sci (2015)

Bottom Line: Among the general transcriptional effects of this bacterium, the expression pattern of important ion-homeostasis related genes was altered after short and long-term stress (Arabidopsis K(+) Transporter 1, High-Affinity K(+) Transporter 1, Sodium Hydrogen Exchanger 2, and Arabidopsis Salt Overly Sensitive 1).In all, the faster and stronger molecular changes induced by the inoculation suggest a PsJN-priming effect, which may explain the observed tolerance after short-term and sustained salt-stress in plants.This opens up new venues to study these relevant biological associations, as well as new approaches to a better understanding of the spatiotemporal mechanisms involved in stress tolerance in plants.

View Article: PubMed Central - PubMed

Affiliation: Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez Santiago, Chile.

ABSTRACT
Salinity is one of the major limitations for food production worldwide. Improvement of plant salt-stress tolerance using plant-growth promoting rhizobacteria (PGPR) has arisen as a promising strategy to help overcome this limitation. However, the molecular and biochemical mechanisms controlling PGPR/plant interactions under salt-stress remain unclear. The main objective of this study was to obtain new insights into the mechanisms underlying salt-stress tolerance enhancement in the salt-sensitive Arabidopsis thaliana Col-0 plants, when inoculated with the well-known PGPR strain Burkholderia phytofirmans PsJN. To tackle this, different life history traits, together with the spatiotemporal accumulation patterns for key metabolites and salt-stress related transcripts, were analyzed in inoculated plants under short and long-term salt-stress. Inoculated plants displayed faster recovery and increased tolerance after sustained salt-stress. PsJN treatment accelerated the accumulation of proline and transcription of genes related to abscisic acid signaling (Relative to Dessication, RD29A and RD29B), ROS scavenging (Ascorbate Peroxidase 2), and detoxification (Glyoxalase I 7), and down-regulated the expression of Lipoxygenase 2 (related to jasmonic acid biosynthesis). Among the general transcriptional effects of this bacterium, the expression pattern of important ion-homeostasis related genes was altered after short and long-term stress (Arabidopsis K(+) Transporter 1, High-Affinity K(+) Transporter 1, Sodium Hydrogen Exchanger 2, and Arabidopsis Salt Overly Sensitive 1). In all, the faster and stronger molecular changes induced by the inoculation suggest a PsJN-priming effect, which may explain the observed tolerance after short-term and sustained salt-stress in plants. This study provides novel information about possible mechanisms involved in salt-stress tolerance induced by PGPR in plants, showing that certain changes are maintained over time. This opens up new venues to study these relevant biological associations, as well as new approaches to a better understanding of the spatiotemporal mechanisms involved in stress tolerance in plants.

No MeSH data available.


Related in: MedlinePlus

Effect of B. phytofirmans PsJN on A. thaliana proline accumulation. Graphic representation of proline levels in A. thaliana plants treated with or without B. phytofirmans PsJN, and transplanted at 11 DAS to half strength MS media with (B) or without (A) addition of 150 mM NaCl/15 mM CaCl2. Proline was extracted 2, 24, and 48 h after transplantation. Data are means ± 1 SE of at least three biological replicates. Asterisks indicate significant differences amongst treatments (Two-way ANOVA, p < 0.05; Bonferroni test, ∗∗P < 0.05).
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4477060&req=5

Figure 4: Effect of B. phytofirmans PsJN on A. thaliana proline accumulation. Graphic representation of proline levels in A. thaliana plants treated with or without B. phytofirmans PsJN, and transplanted at 11 DAS to half strength MS media with (B) or without (A) addition of 150 mM NaCl/15 mM CaCl2. Proline was extracted 2, 24, and 48 h after transplantation. Data are means ± 1 SE of at least three biological replicates. Asterisks indicate significant differences amongst treatments (Two-way ANOVA, p < 0.05; Bonferroni test, ∗∗P < 0.05).

Mentions: To study the molecular and metabolic mechanisms behind the enhancement of salt-stress tolerance in PsJN inoculated plants, the content of the osmoprotectant molecule proline within plant tissues (Sneha et al., 2013) was measured 2, 24, and 48 h after transplant to MS or saline medium in both inoculated and non-inoculated plants (Figure 4). Also, the temporal expression patterns of genes related to general abiotic stresses were evaluated in roots and rosettes of plants in the early phase of short-term salt-stress treatments (Figure 5).


Burkholderia phytofirmans PsJN induces long-term metabolic and transcriptional changes involved in Arabidopsis thaliana salt tolerance.

Pinedo I, Ledger T, Greve M, Poupin MJ - Front Plant Sci (2015)

Effect of B. phytofirmans PsJN on A. thaliana proline accumulation. Graphic representation of proline levels in A. thaliana plants treated with or without B. phytofirmans PsJN, and transplanted at 11 DAS to half strength MS media with (B) or without (A) addition of 150 mM NaCl/15 mM CaCl2. Proline was extracted 2, 24, and 48 h after transplantation. Data are means ± 1 SE of at least three biological replicates. Asterisks indicate significant differences amongst treatments (Two-way ANOVA, p < 0.05; Bonferroni test, ∗∗P < 0.05).
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4477060&req=5

Figure 4: Effect of B. phytofirmans PsJN on A. thaliana proline accumulation. Graphic representation of proline levels in A. thaliana plants treated with or without B. phytofirmans PsJN, and transplanted at 11 DAS to half strength MS media with (B) or without (A) addition of 150 mM NaCl/15 mM CaCl2. Proline was extracted 2, 24, and 48 h after transplantation. Data are means ± 1 SE of at least three biological replicates. Asterisks indicate significant differences amongst treatments (Two-way ANOVA, p < 0.05; Bonferroni test, ∗∗P < 0.05).
Mentions: To study the molecular and metabolic mechanisms behind the enhancement of salt-stress tolerance in PsJN inoculated plants, the content of the osmoprotectant molecule proline within plant tissues (Sneha et al., 2013) was measured 2, 24, and 48 h after transplant to MS or saline medium in both inoculated and non-inoculated plants (Figure 4). Also, the temporal expression patterns of genes related to general abiotic stresses were evaluated in roots and rosettes of plants in the early phase of short-term salt-stress treatments (Figure 5).

Bottom Line: Among the general transcriptional effects of this bacterium, the expression pattern of important ion-homeostasis related genes was altered after short and long-term stress (Arabidopsis K(+) Transporter 1, High-Affinity K(+) Transporter 1, Sodium Hydrogen Exchanger 2, and Arabidopsis Salt Overly Sensitive 1).In all, the faster and stronger molecular changes induced by the inoculation suggest a PsJN-priming effect, which may explain the observed tolerance after short-term and sustained salt-stress in plants.This opens up new venues to study these relevant biological associations, as well as new approaches to a better understanding of the spatiotemporal mechanisms involved in stress tolerance in plants.

View Article: PubMed Central - PubMed

Affiliation: Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez Santiago, Chile.

ABSTRACT
Salinity is one of the major limitations for food production worldwide. Improvement of plant salt-stress tolerance using plant-growth promoting rhizobacteria (PGPR) has arisen as a promising strategy to help overcome this limitation. However, the molecular and biochemical mechanisms controlling PGPR/plant interactions under salt-stress remain unclear. The main objective of this study was to obtain new insights into the mechanisms underlying salt-stress tolerance enhancement in the salt-sensitive Arabidopsis thaliana Col-0 plants, when inoculated with the well-known PGPR strain Burkholderia phytofirmans PsJN. To tackle this, different life history traits, together with the spatiotemporal accumulation patterns for key metabolites and salt-stress related transcripts, were analyzed in inoculated plants under short and long-term salt-stress. Inoculated plants displayed faster recovery and increased tolerance after sustained salt-stress. PsJN treatment accelerated the accumulation of proline and transcription of genes related to abscisic acid signaling (Relative to Dessication, RD29A and RD29B), ROS scavenging (Ascorbate Peroxidase 2), and detoxification (Glyoxalase I 7), and down-regulated the expression of Lipoxygenase 2 (related to jasmonic acid biosynthesis). Among the general transcriptional effects of this bacterium, the expression pattern of important ion-homeostasis related genes was altered after short and long-term stress (Arabidopsis K(+) Transporter 1, High-Affinity K(+) Transporter 1, Sodium Hydrogen Exchanger 2, and Arabidopsis Salt Overly Sensitive 1). In all, the faster and stronger molecular changes induced by the inoculation suggest a PsJN-priming effect, which may explain the observed tolerance after short-term and sustained salt-stress in plants. This study provides novel information about possible mechanisms involved in salt-stress tolerance induced by PGPR in plants, showing that certain changes are maintained over time. This opens up new venues to study these relevant biological associations, as well as new approaches to a better understanding of the spatiotemporal mechanisms involved in stress tolerance in plants.

No MeSH data available.


Related in: MedlinePlus