Limits...
Examining the Causes and Consequences of Short-Term Behavioral Change during the Middle Stone Age at Sibudu, South Africa.

Conard NJ, Will M - PLoS ONE (2015)

Bottom Line: We present the results from a technological analysis of 11 stratified lithic assemblages which overlie the Howiesons Poort deposits and all date to ~58 ka.The lithic assemblages can be grouped into three cohesive units which differ from each other in the procurement of raw materials, the frequency in the methods of core reduction, the kind of blanks produced, and in the nature of tools the inhabitants of Sibudu made and used.We also identify a clear pattern of development toward what we have previously defined as the Sibudan cultural taxonomic unit.

View Article: PubMed Central - PubMed

Affiliation: Department of Early Prehistory and Quaternary Ecology, University of Tübingen, Schloss Hohentübingen, 72070, Tübingen, Germany; Senckenberg Center for Human Evolution and Paleoecology, University of Tübingen, Schloss Hohentübingen, 72070, Tübingen, Germany.

ABSTRACT
Sibudu in KwaZulu-Natal (South Africa) with its rich and high-resolution archaeological sequence provides an ideal case study to examine the causes and consequences of short-term variation in the behavior of modern humans during the Middle Stone Age (MSA). We present the results from a technological analysis of 11 stratified lithic assemblages which overlie the Howiesons Poort deposits and all date to ~58 ka. Based on technological and typological attributes, we conducted inter-assemblage comparisons to characterize the nature and tempo of cultural change in successive occupations. This work identified considerable short-term variation with clear temporal trends throughout the sequence, demonstrating that knappers at Sibudu varied their technology over short time spans. The lithic assemblages can be grouped into three cohesive units which differ from each other in the procurement of raw materials, the frequency in the methods of core reduction, the kind of blanks produced, and in the nature of tools the inhabitants of Sibudu made and used. These groups of assemblages represent different strategies of lithic technology, which build upon each other in a gradual, cumulative manner. We also identify a clear pattern of development toward what we have previously defined as the Sibudan cultural taxonomic unit. Contextualizing these results on larger geographical scales shows that the later phase of the MSA during MIS 3 in KwaZulu-Natal and southern Africa is one of dynamic cultural change rather than of stasis or stagnation as has at times been claimed. In combination with environmental, subsistence and contextual information, our high-resolution data on lithic technology suggest that short-term behavioral variability at Sibudu can be best explained by changes in technological organization and socio-economic dynamics instead of environmental forcing.

No MeSH data available.


Related in: MedlinePlus

Selection of cores from assemblages SU.1: Parallel core, bidirectional (dolerite, E2-854); 2: Parallel core, centripetal (dolerite, D3-1082); 3: Parallel core, unidirectional (dolerite, E3-1246.1); 4: Inclined core, bifacial (E3-1214); 5: Single-platform core, blades (dolerite, C2-1192); 6: Single-platform core on flake, bladelets (hornfels, C2-1127); 7: Burin on tool, bladelets (hornfels, C2-1026). (Drawings by M. Lajmiri).
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4476744&req=5

pone.0130001.g010: Selection of cores from assemblages SU.1: Parallel core, bidirectional (dolerite, E2-854); 2: Parallel core, centripetal (dolerite, D3-1082); 3: Parallel core, unidirectional (dolerite, E3-1246.1); 4: Inclined core, bifacial (E3-1214); 5: Single-platform core, blades (dolerite, C2-1192); 6: Single-platform core on flake, bladelets (hornfels, C2-1127); 7: Burin on tool, bladelets (hornfels, C2-1026). (Drawings by M. Lajmiri).

Mentions: The methods of core reduction constitute an integral part of the technological system of MSA knappers. We chose the unified taxonomy by Conard et al. [71] to provide a comparable framework of core classification. We focus on the differential frequency and thus variation in use of reduction strategies, since one can commonly identify multiple knapping strategies in a single assemblage (e.g. [53] p.120). Due to the scarcity of cores in each assemblage (Table 5) and their intense degree of exploitation, the discussion of reduction strategies also draws heavily on information gained from the morphology, geometry and dorsal scar configuration of debitage products. Due to the problem of equifinality in lithic reduction, many debitage products cannot be unambiguously attributed to a specific reduction system. We thus base the following discussion on specific forms that could be directly and repeatedly associated with a particular core reduction system. While these observations cannot provide precise quantitative data, they do inform on the absence or presence of certain core reduction systems as well as their relative abundance within the studied sequence. Table 6 summarizes these observations. There are three principle methods of core reduction which vary in abundance: Parallel, platform and inclined. Figs 6–11 provide and overview for the cores and products of these systems for the newly described assemblages WOG1-POX (see [32]: Figs 10 and 11 for cores from BM-BSP).


Examining the Causes and Consequences of Short-Term Behavioral Change during the Middle Stone Age at Sibudu, South Africa.

Conard NJ, Will M - PLoS ONE (2015)

Selection of cores from assemblages SU.1: Parallel core, bidirectional (dolerite, E2-854); 2: Parallel core, centripetal (dolerite, D3-1082); 3: Parallel core, unidirectional (dolerite, E3-1246.1); 4: Inclined core, bifacial (E3-1214); 5: Single-platform core, blades (dolerite, C2-1192); 6: Single-platform core on flake, bladelets (hornfels, C2-1127); 7: Burin on tool, bladelets (hornfels, C2-1026). (Drawings by M. Lajmiri).
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4476744&req=5

pone.0130001.g010: Selection of cores from assemblages SU.1: Parallel core, bidirectional (dolerite, E2-854); 2: Parallel core, centripetal (dolerite, D3-1082); 3: Parallel core, unidirectional (dolerite, E3-1246.1); 4: Inclined core, bifacial (E3-1214); 5: Single-platform core, blades (dolerite, C2-1192); 6: Single-platform core on flake, bladelets (hornfels, C2-1127); 7: Burin on tool, bladelets (hornfels, C2-1026). (Drawings by M. Lajmiri).
Mentions: The methods of core reduction constitute an integral part of the technological system of MSA knappers. We chose the unified taxonomy by Conard et al. [71] to provide a comparable framework of core classification. We focus on the differential frequency and thus variation in use of reduction strategies, since one can commonly identify multiple knapping strategies in a single assemblage (e.g. [53] p.120). Due to the scarcity of cores in each assemblage (Table 5) and their intense degree of exploitation, the discussion of reduction strategies also draws heavily on information gained from the morphology, geometry and dorsal scar configuration of debitage products. Due to the problem of equifinality in lithic reduction, many debitage products cannot be unambiguously attributed to a specific reduction system. We thus base the following discussion on specific forms that could be directly and repeatedly associated with a particular core reduction system. While these observations cannot provide precise quantitative data, they do inform on the absence or presence of certain core reduction systems as well as their relative abundance within the studied sequence. Table 6 summarizes these observations. There are three principle methods of core reduction which vary in abundance: Parallel, platform and inclined. Figs 6–11 provide and overview for the cores and products of these systems for the newly described assemblages WOG1-POX (see [32]: Figs 10 and 11 for cores from BM-BSP).

Bottom Line: We present the results from a technological analysis of 11 stratified lithic assemblages which overlie the Howiesons Poort deposits and all date to ~58 ka.The lithic assemblages can be grouped into three cohesive units which differ from each other in the procurement of raw materials, the frequency in the methods of core reduction, the kind of blanks produced, and in the nature of tools the inhabitants of Sibudu made and used.We also identify a clear pattern of development toward what we have previously defined as the Sibudan cultural taxonomic unit.

View Article: PubMed Central - PubMed

Affiliation: Department of Early Prehistory and Quaternary Ecology, University of Tübingen, Schloss Hohentübingen, 72070, Tübingen, Germany; Senckenberg Center for Human Evolution and Paleoecology, University of Tübingen, Schloss Hohentübingen, 72070, Tübingen, Germany.

ABSTRACT
Sibudu in KwaZulu-Natal (South Africa) with its rich and high-resolution archaeological sequence provides an ideal case study to examine the causes and consequences of short-term variation in the behavior of modern humans during the Middle Stone Age (MSA). We present the results from a technological analysis of 11 stratified lithic assemblages which overlie the Howiesons Poort deposits and all date to ~58 ka. Based on technological and typological attributes, we conducted inter-assemblage comparisons to characterize the nature and tempo of cultural change in successive occupations. This work identified considerable short-term variation with clear temporal trends throughout the sequence, demonstrating that knappers at Sibudu varied their technology over short time spans. The lithic assemblages can be grouped into three cohesive units which differ from each other in the procurement of raw materials, the frequency in the methods of core reduction, the kind of blanks produced, and in the nature of tools the inhabitants of Sibudu made and used. These groups of assemblages represent different strategies of lithic technology, which build upon each other in a gradual, cumulative manner. We also identify a clear pattern of development toward what we have previously defined as the Sibudan cultural taxonomic unit. Contextualizing these results on larger geographical scales shows that the later phase of the MSA during MIS 3 in KwaZulu-Natal and southern Africa is one of dynamic cultural change rather than of stasis or stagnation as has at times been claimed. In combination with environmental, subsistence and contextual information, our high-resolution data on lithic technology suggest that short-term behavioral variability at Sibudu can be best explained by changes in technological organization and socio-economic dynamics instead of environmental forcing.

No MeSH data available.


Related in: MedlinePlus