Limits...
Examining the Causes and Consequences of Short-Term Behavioral Change during the Middle Stone Age at Sibudu, South Africa.

Conard NJ, Will M - PLoS ONE (2015)

Bottom Line: We present the results from a technological analysis of 11 stratified lithic assemblages which overlie the Howiesons Poort deposits and all date to ~58 ka.The lithic assemblages can be grouped into three cohesive units which differ from each other in the procurement of raw materials, the frequency in the methods of core reduction, the kind of blanks produced, and in the nature of tools the inhabitants of Sibudu made and used.We also identify a clear pattern of development toward what we have previously defined as the Sibudan cultural taxonomic unit.

View Article: PubMed Central - PubMed

Affiliation: Department of Early Prehistory and Quaternary Ecology, University of Tübingen, Schloss Hohentübingen, 72070, Tübingen, Germany; Senckenberg Center for Human Evolution and Paleoecology, University of Tübingen, Schloss Hohentübingen, 72070, Tübingen, Germany.

ABSTRACT
Sibudu in KwaZulu-Natal (South Africa) with its rich and high-resolution archaeological sequence provides an ideal case study to examine the causes and consequences of short-term variation in the behavior of modern humans during the Middle Stone Age (MSA). We present the results from a technological analysis of 11 stratified lithic assemblages which overlie the Howiesons Poort deposits and all date to ~58 ka. Based on technological and typological attributes, we conducted inter-assemblage comparisons to characterize the nature and tempo of cultural change in successive occupations. This work identified considerable short-term variation with clear temporal trends throughout the sequence, demonstrating that knappers at Sibudu varied their technology over short time spans. The lithic assemblages can be grouped into three cohesive units which differ from each other in the procurement of raw materials, the frequency in the methods of core reduction, the kind of blanks produced, and in the nature of tools the inhabitants of Sibudu made and used. These groups of assemblages represent different strategies of lithic technology, which build upon each other in a gradual, cumulative manner. We also identify a clear pattern of development toward what we have previously defined as the Sibudan cultural taxonomic unit. Contextualizing these results on larger geographical scales shows that the later phase of the MSA during MIS 3 in KwaZulu-Natal and southern Africa is one of dynamic cultural change rather than of stasis or stagnation as has at times been claimed. In combination with environmental, subsistence and contextual information, our high-resolution data on lithic technology suggest that short-term behavioral variability at Sibudu can be best explained by changes in technological organization and socio-economic dynamics instead of environmental forcing.

No MeSH data available.


Related in: MedlinePlus

Selection of blanks from assemblage SU.1: Inclined flake, invasive (dolerite, D3-1111); 2: Inclined flake, central (dolerite, E2-852); 3–4: Inclined flake, partial core edge (both dolerite, C3-1022, E2-947); 5–8: Inclined flake, partial core edge (all dolerite, C2-1236, D3-1222.5, D2-791, D2-838); 9: Laminar flake, bidirectional (dolerite, D3-1184); 10: Blade, unidirectional (dolerite, C2-1091); 11–12: Blade, bidirectional (both dolerite; C2-1005.3, C2-1183); 13: Levallois flake, unidirectional (dolerite, C3-982); 14–15 Levallois point (both dolerite, C2-1234, E2-934); Levallois flake, centripetal (dolerite, C2-1220). (Drawings by M. Lajmiri)
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4476744&req=5

pone.0130001.g009: Selection of blanks from assemblage SU.1: Inclined flake, invasive (dolerite, D3-1111); 2: Inclined flake, central (dolerite, E2-852); 3–4: Inclined flake, partial core edge (both dolerite, C3-1022, E2-947); 5–8: Inclined flake, partial core edge (all dolerite, C2-1236, D3-1222.5, D2-791, D2-838); 9: Laminar flake, bidirectional (dolerite, D3-1184); 10: Blade, unidirectional (dolerite, C2-1091); 11–12: Blade, bidirectional (both dolerite; C2-1005.3, C2-1183); 13: Levallois flake, unidirectional (dolerite, C3-982); 14–15 Levallois point (both dolerite, C2-1234, E2-934); Levallois flake, centripetal (dolerite, C2-1220). (Drawings by M. Lajmiri)

Mentions: Parallel methods at Sibudu mostly follow a Levallois system of reduction (sensu [43, 88]). The cores exhibit two hierarchical and non-interchangeable surfaces and the major removals are executed parallel to the plane that intersects the two surfaces from prepared striking platforms (Fig 10: 1–3; Fig 11: 1–2). Using this method, knappers produced large rectangular, oval or convergent flakes often with facetted platforms, flat longitudinal profiles and exterior platform angles (EPA) around 90° (Fig 6: 2–3; Fig 7: 13–16; Fig 9: 13–15). In most cases, the reduction of parallel cores proceeded by unidirectional or centripetal removals with a few cores showing preferential or bidirectional modalities. Based on the number of cores and specific products, knappers used parallel production predominantly in BM-BSP and WOG1-SP (Table 6). The assemblages that lie in between (SU-POX) show a low prevalence of this method, but with some diagnostic Levallois flakes.


Examining the Causes and Consequences of Short-Term Behavioral Change during the Middle Stone Age at Sibudu, South Africa.

Conard NJ, Will M - PLoS ONE (2015)

Selection of blanks from assemblage SU.1: Inclined flake, invasive (dolerite, D3-1111); 2: Inclined flake, central (dolerite, E2-852); 3–4: Inclined flake, partial core edge (both dolerite, C3-1022, E2-947); 5–8: Inclined flake, partial core edge (all dolerite, C2-1236, D3-1222.5, D2-791, D2-838); 9: Laminar flake, bidirectional (dolerite, D3-1184); 10: Blade, unidirectional (dolerite, C2-1091); 11–12: Blade, bidirectional (both dolerite; C2-1005.3, C2-1183); 13: Levallois flake, unidirectional (dolerite, C3-982); 14–15 Levallois point (both dolerite, C2-1234, E2-934); Levallois flake, centripetal (dolerite, C2-1220). (Drawings by M. Lajmiri)
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4476744&req=5

pone.0130001.g009: Selection of blanks from assemblage SU.1: Inclined flake, invasive (dolerite, D3-1111); 2: Inclined flake, central (dolerite, E2-852); 3–4: Inclined flake, partial core edge (both dolerite, C3-1022, E2-947); 5–8: Inclined flake, partial core edge (all dolerite, C2-1236, D3-1222.5, D2-791, D2-838); 9: Laminar flake, bidirectional (dolerite, D3-1184); 10: Blade, unidirectional (dolerite, C2-1091); 11–12: Blade, bidirectional (both dolerite; C2-1005.3, C2-1183); 13: Levallois flake, unidirectional (dolerite, C3-982); 14–15 Levallois point (both dolerite, C2-1234, E2-934); Levallois flake, centripetal (dolerite, C2-1220). (Drawings by M. Lajmiri)
Mentions: Parallel methods at Sibudu mostly follow a Levallois system of reduction (sensu [43, 88]). The cores exhibit two hierarchical and non-interchangeable surfaces and the major removals are executed parallel to the plane that intersects the two surfaces from prepared striking platforms (Fig 10: 1–3; Fig 11: 1–2). Using this method, knappers produced large rectangular, oval or convergent flakes often with facetted platforms, flat longitudinal profiles and exterior platform angles (EPA) around 90° (Fig 6: 2–3; Fig 7: 13–16; Fig 9: 13–15). In most cases, the reduction of parallel cores proceeded by unidirectional or centripetal removals with a few cores showing preferential or bidirectional modalities. Based on the number of cores and specific products, knappers used parallel production predominantly in BM-BSP and WOG1-SP (Table 6). The assemblages that lie in between (SU-POX) show a low prevalence of this method, but with some diagnostic Levallois flakes.

Bottom Line: We present the results from a technological analysis of 11 stratified lithic assemblages which overlie the Howiesons Poort deposits and all date to ~58 ka.The lithic assemblages can be grouped into three cohesive units which differ from each other in the procurement of raw materials, the frequency in the methods of core reduction, the kind of blanks produced, and in the nature of tools the inhabitants of Sibudu made and used.We also identify a clear pattern of development toward what we have previously defined as the Sibudan cultural taxonomic unit.

View Article: PubMed Central - PubMed

Affiliation: Department of Early Prehistory and Quaternary Ecology, University of Tübingen, Schloss Hohentübingen, 72070, Tübingen, Germany; Senckenberg Center for Human Evolution and Paleoecology, University of Tübingen, Schloss Hohentübingen, 72070, Tübingen, Germany.

ABSTRACT
Sibudu in KwaZulu-Natal (South Africa) with its rich and high-resolution archaeological sequence provides an ideal case study to examine the causes and consequences of short-term variation in the behavior of modern humans during the Middle Stone Age (MSA). We present the results from a technological analysis of 11 stratified lithic assemblages which overlie the Howiesons Poort deposits and all date to ~58 ka. Based on technological and typological attributes, we conducted inter-assemblage comparisons to characterize the nature and tempo of cultural change in successive occupations. This work identified considerable short-term variation with clear temporal trends throughout the sequence, demonstrating that knappers at Sibudu varied their technology over short time spans. The lithic assemblages can be grouped into three cohesive units which differ from each other in the procurement of raw materials, the frequency in the methods of core reduction, the kind of blanks produced, and in the nature of tools the inhabitants of Sibudu made and used. These groups of assemblages represent different strategies of lithic technology, which build upon each other in a gradual, cumulative manner. We also identify a clear pattern of development toward what we have previously defined as the Sibudan cultural taxonomic unit. Contextualizing these results on larger geographical scales shows that the later phase of the MSA during MIS 3 in KwaZulu-Natal and southern Africa is one of dynamic cultural change rather than of stasis or stagnation as has at times been claimed. In combination with environmental, subsistence and contextual information, our high-resolution data on lithic technology suggest that short-term behavioral variability at Sibudu can be best explained by changes in technological organization and socio-economic dynamics instead of environmental forcing.

No MeSH data available.


Related in: MedlinePlus