Limits...
Altered Structural and Functional Connectivity in Late Preterm Preadolescence: An Anatomic Seed-Based Study of Resting State Networks Related to the Posteromedial and Lateral Parietal Cortex.

Degnan AJ, Wisnowski JL, Choi S, Ceschin R, Bhushan C, Leahy RM, Corby P, Schmithorst VJ, Panigrahy A - PLoS ONE (2015)

Bottom Line: Late preterm preadolescence is associated with altered functional connectivity from the PMC and lateral parietal cortex to known distributed functional cortical networks despite no significant executive neurocognitive differences.Selective increased structural connectivity was observed in the setting of decreased posterior interhemispheric connections.Future work is needed to determine if these findings represent a compensatory adaptation employing alternate neural circuitry or could reflect subtle pathology resulting in emotional processing deficits not seen with neurocognitive testing.

View Article: PubMed Central - PubMed

Affiliation: Department of Pediatric Radiology, Children's Hospital of Pittsburgh of UPMC, 4401 Penn Avenue, Floor 2, Pittsburgh, PA, 15224, United States of America; Department of Radiology, University of Pittsburgh Medical Center (UPMC), 3950 Presby South Tower, 200 Lothrop Street, Pittsburgh, PA 15213, United States of America.

ABSTRACT

Objective: Late preterm birth confers increased risk of developmental delay, academic difficulties and social deficits. The late third trimester may represent a critical period of development of neural networks including the default mode network (DMN), which is essential to normal cognition. Our objective is to identify functional and structural connectivity differences in the posteromedial cortex related to late preterm birth.

Methods: Thirty-eight preadolescents (ages 9-13; 19 born in the late preterm period (≥32 weeks gestational age) and 19 at term) without access to advanced neonatal care were recruited from a low socioeconomic status community in Brazil. Participants underwent neurocognitive testing, 3-dimensional T1-weighted imaging, diffusion-weighted imaging and resting state functional MRI (RS-fMRI). Seed-based probabilistic diffusion tractography and RS-fMRI analyses were performed using unilateral seeds within the posterior DMN (posterior cingulate cortex, precuneus) and lateral parietal DMN (superior marginal and angular gyri).

Results: Late preterm children demonstrated increased functional connectivity within the posterior default mode networks and increased anti-correlation with the central-executive network when seeded from the posteromedial cortex (PMC). Key differences were demonstrated between PMC components with increased anti-correlation with the salience network seen only with posterior cingulate cortex seeding but not with precuneus seeding. Probabilistic tractography showed increased streamlines within the right inferior longitudinal fasciculus and inferior fronto-occipital fasciculus within late preterm children while decreased intrahemispheric streamlines were also observed. No significant differences in neurocognitive testing were demonstrated between groups.

Conclusion: Late preterm preadolescence is associated with altered functional connectivity from the PMC and lateral parietal cortex to known distributed functional cortical networks despite no significant executive neurocognitive differences. Selective increased structural connectivity was observed in the setting of decreased posterior interhemispheric connections. Future work is needed to determine if these findings represent a compensatory adaptation employing alternate neural circuitry or could reflect subtle pathology resulting in emotional processing deficits not seen with neurocognitive testing.

No MeSH data available.


Related in: MedlinePlus

Comparison of Tractography Differences between the Right and Left Posteromedial Cortex.Seeding from both the right and left posteromedial cortex demonstrated increased streamlines within the right ILF/IFOF, but the magnitude of increased streamlines was greater for the right PMC seed. Decreases within the splenium (mostly within the more right aspect) were seen with left seeding while at the same time significant increases were seen within subcortical white matter near the right lateral parietal cortex. Right seeding also showed decreases within the left posterior parietal subcortical white matter. Color bars indicate increased streamlines (+2.1 to +4.1) and decreased streamlines (-2.1 to -4.1).
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4476681&req=5

pone.0130686.g007: Comparison of Tractography Differences between the Right and Left Posteromedial Cortex.Seeding from both the right and left posteromedial cortex demonstrated increased streamlines within the right ILF/IFOF, but the magnitude of increased streamlines was greater for the right PMC seed. Decreases within the splenium (mostly within the more right aspect) were seen with left seeding while at the same time significant increases were seen within subcortical white matter near the right lateral parietal cortex. Right seeding also showed decreases within the left posterior parietal subcortical white matter. Color bars indicate increased streamlines (+2.1 to +4.1) and decreased streamlines (-2.1 to -4.1).

Mentions: In seeding the right and left posteromedial cortex as depicted in Fig 7, both seeds resulted in significantly increased streamlines within the late preterm children compared to control children within the right ILF/IFOF as previously discussed although the left seed streamlines appear less substantial. Decreases were seen in the posterior corpus callosum (splenium) for the left PMC seed, implying decreased interhemispheric connectivity. Decreases for the right PMC seed are demonstrated within the left posterior parietal-occipital white matter. Left PMC seeding, on the other hand, demonstrated increased streamlines within subcortical white matter in the region of the right lateral parietal cortex, implying increased anatomical connectivity to the default mode network hub.


Altered Structural and Functional Connectivity in Late Preterm Preadolescence: An Anatomic Seed-Based Study of Resting State Networks Related to the Posteromedial and Lateral Parietal Cortex.

Degnan AJ, Wisnowski JL, Choi S, Ceschin R, Bhushan C, Leahy RM, Corby P, Schmithorst VJ, Panigrahy A - PLoS ONE (2015)

Comparison of Tractography Differences between the Right and Left Posteromedial Cortex.Seeding from both the right and left posteromedial cortex demonstrated increased streamlines within the right ILF/IFOF, but the magnitude of increased streamlines was greater for the right PMC seed. Decreases within the splenium (mostly within the more right aspect) were seen with left seeding while at the same time significant increases were seen within subcortical white matter near the right lateral parietal cortex. Right seeding also showed decreases within the left posterior parietal subcortical white matter. Color bars indicate increased streamlines (+2.1 to +4.1) and decreased streamlines (-2.1 to -4.1).
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4476681&req=5

pone.0130686.g007: Comparison of Tractography Differences between the Right and Left Posteromedial Cortex.Seeding from both the right and left posteromedial cortex demonstrated increased streamlines within the right ILF/IFOF, but the magnitude of increased streamlines was greater for the right PMC seed. Decreases within the splenium (mostly within the more right aspect) were seen with left seeding while at the same time significant increases were seen within subcortical white matter near the right lateral parietal cortex. Right seeding also showed decreases within the left posterior parietal subcortical white matter. Color bars indicate increased streamlines (+2.1 to +4.1) and decreased streamlines (-2.1 to -4.1).
Mentions: In seeding the right and left posteromedial cortex as depicted in Fig 7, both seeds resulted in significantly increased streamlines within the late preterm children compared to control children within the right ILF/IFOF as previously discussed although the left seed streamlines appear less substantial. Decreases were seen in the posterior corpus callosum (splenium) for the left PMC seed, implying decreased interhemispheric connectivity. Decreases for the right PMC seed are demonstrated within the left posterior parietal-occipital white matter. Left PMC seeding, on the other hand, demonstrated increased streamlines within subcortical white matter in the region of the right lateral parietal cortex, implying increased anatomical connectivity to the default mode network hub.

Bottom Line: Late preterm preadolescence is associated with altered functional connectivity from the PMC and lateral parietal cortex to known distributed functional cortical networks despite no significant executive neurocognitive differences.Selective increased structural connectivity was observed in the setting of decreased posterior interhemispheric connections.Future work is needed to determine if these findings represent a compensatory adaptation employing alternate neural circuitry or could reflect subtle pathology resulting in emotional processing deficits not seen with neurocognitive testing.

View Article: PubMed Central - PubMed

Affiliation: Department of Pediatric Radiology, Children's Hospital of Pittsburgh of UPMC, 4401 Penn Avenue, Floor 2, Pittsburgh, PA, 15224, United States of America; Department of Radiology, University of Pittsburgh Medical Center (UPMC), 3950 Presby South Tower, 200 Lothrop Street, Pittsburgh, PA 15213, United States of America.

ABSTRACT

Objective: Late preterm birth confers increased risk of developmental delay, academic difficulties and social deficits. The late third trimester may represent a critical period of development of neural networks including the default mode network (DMN), which is essential to normal cognition. Our objective is to identify functional and structural connectivity differences in the posteromedial cortex related to late preterm birth.

Methods: Thirty-eight preadolescents (ages 9-13; 19 born in the late preterm period (≥32 weeks gestational age) and 19 at term) without access to advanced neonatal care were recruited from a low socioeconomic status community in Brazil. Participants underwent neurocognitive testing, 3-dimensional T1-weighted imaging, diffusion-weighted imaging and resting state functional MRI (RS-fMRI). Seed-based probabilistic diffusion tractography and RS-fMRI analyses were performed using unilateral seeds within the posterior DMN (posterior cingulate cortex, precuneus) and lateral parietal DMN (superior marginal and angular gyri).

Results: Late preterm children demonstrated increased functional connectivity within the posterior default mode networks and increased anti-correlation with the central-executive network when seeded from the posteromedial cortex (PMC). Key differences were demonstrated between PMC components with increased anti-correlation with the salience network seen only with posterior cingulate cortex seeding but not with precuneus seeding. Probabilistic tractography showed increased streamlines within the right inferior longitudinal fasciculus and inferior fronto-occipital fasciculus within late preterm children while decreased intrahemispheric streamlines were also observed. No significant differences in neurocognitive testing were demonstrated between groups.

Conclusion: Late preterm preadolescence is associated with altered functional connectivity from the PMC and lateral parietal cortex to known distributed functional cortical networks despite no significant executive neurocognitive differences. Selective increased structural connectivity was observed in the setting of decreased posterior interhemispheric connections. Future work is needed to determine if these findings represent a compensatory adaptation employing alternate neural circuitry or could reflect subtle pathology resulting in emotional processing deficits not seen with neurocognitive testing.

No MeSH data available.


Related in: MedlinePlus