Limits...
Next Generation Sequencing and Transcriptome Analysis Predicts Biosynthetic Pathway of Sennosides from Senna (Cassia angustifolia Vahl.), a Non-Model Plant with Potent Laxative Properties.

Rama Reddy NR, Mehta RH, Soni PH, Makasana J, Gajbhiye NA, Ponnuchamy M, Kumar J - PLoS ONE (2015)

Bottom Line: A total of 10,763 CDS differentially expressing in both young and mature leaf libraries of which 2,343 (21.7%) CDS were up-regulated in young compared to mature leaf.Several differentially expressed genes found functionally associated with sennoside biosynthesis.We have identified a set of putative genes involved in various secondary metabolite pathways, especially those related to the synthesis of sennosides which will serve as an important platform for public information about gene expression, genomics, and functional genomics in senna.

View Article: PubMed Central - PubMed

Affiliation: ICAR-Directorate of Medicinal and Aromatic Plants Research (DMAPR), Anand, Gujarat, India.

ABSTRACT
Senna (Cassia angustifolia Vahl.) is a world's natural laxative medicinal plant. Laxative properties are due to sennosides (anthraquinone glycosides) natural products. However, little genetic information is available for this species, especially concerning the biosynthetic pathways of sennosides. We present here the transcriptome sequencing of young and mature leaf tissue of Cassia angustifolia using Illumina MiSeq platform that resulted in a total of 6.34 Gb of raw nucleotide sequence. The sequence assembly resulted in 42230 and 37174 transcripts with an average length of 1119 bp and 1467 bp for young and mature leaf, respectively. The transcripts were annotated using NCBI BLAST with 'green plant database (txid 33090)', Swiss Prot, Kyoto Encylcopedia of Genes & Genomes (KEGG), Cluster of Orthologous Gene (COG) and Gene Ontology (GO). Out of the total transcripts, 40138 (95.0%) and 36349 (97.7%) from young and mature leaf, respectively, were annotated by BLASTX against green plant database of NCBI. We used InterProscan to see protein similarity at domain level, a total of 34031 (young leaf) and 32077 (mature leaf) transcripts were annotated against the Pfam domains. All transcripts from young and mature leaf were assigned to 191 KEGG pathways. There were 166 and 159 CDS, respectively, from young and mature leaf involved in metabolism of terpenoids and polyketides. Many CDS encoding enzymes leading to biosynthesis of sennosides were identified. A total of 10,763 CDS differentially expressing in both young and mature leaf libraries of which 2,343 (21.7%) CDS were up-regulated in young compared to mature leaf. Several differentially expressed genes found functionally associated with sennoside biosynthesis. CDS encoding for many CYPs and TF families were identified having probable roles in metabolism of primary as well as secondary metabolites. We developed SSR markers for molecular breeding of senna. We have identified a set of putative genes involved in various secondary metabolite pathways, especially those related to the synthesis of sennosides which will serve as an important platform for public information about gene expression, genomics, and functional genomics in senna.

No MeSH data available.


Variation in the total sennoside content (%) with ontogeny of the leaves.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4476680&req=5

pone.0129422.g010: Variation in the total sennoside content (%) with ontogeny of the leaves.

Mentions: High Performance Liquid Chromatography (HPLC) was used to estimate the total sennoside content in senna leaves using methanolic extract. UV-visible absorption spectrum of both standard sennoside and the leaf extract was recorded at 270 nm. A five level calibration curve was established over the range 0.168–1.68 mg/ml for sennoside-A (SA) and 0.38–7.56 mg/ml for sennoside-B (SB). The calibration curve obtained was Y = (9.196e–07) X+ (-0.0045) for SA and Y = (6.783e -07) X + (0.0747) for SB. Coefficient of correlation (R2) was 0.9997 for SA and 0.9969 for SB indicating good linearity of the curve. The chromatograms of the standard sennoside and senna leaf methanolic extract recorded peaks corresponding to sennoside are presented in S8 Fig. The first leaf (young; just opened) recorded 6.0% (w/w) sennoside content, second leaf (two day old) recorded 5.0% (w/w) sennoside content, and third leaf (three days old) recorded 6.2% (w/w) sennoside content which was the highest, whereas the seventh leaf from the top recorded 1.3% which was lowest (Fig 10). The sennoside content of other leaves (8th to 25th leaves) was in the range of 1.5 to 3.0% indicating the variation in the sennoside content with the leaf age.


Next Generation Sequencing and Transcriptome Analysis Predicts Biosynthetic Pathway of Sennosides from Senna (Cassia angustifolia Vahl.), a Non-Model Plant with Potent Laxative Properties.

Rama Reddy NR, Mehta RH, Soni PH, Makasana J, Gajbhiye NA, Ponnuchamy M, Kumar J - PLoS ONE (2015)

Variation in the total sennoside content (%) with ontogeny of the leaves.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4476680&req=5

pone.0129422.g010: Variation in the total sennoside content (%) with ontogeny of the leaves.
Mentions: High Performance Liquid Chromatography (HPLC) was used to estimate the total sennoside content in senna leaves using methanolic extract. UV-visible absorption spectrum of both standard sennoside and the leaf extract was recorded at 270 nm. A five level calibration curve was established over the range 0.168–1.68 mg/ml for sennoside-A (SA) and 0.38–7.56 mg/ml for sennoside-B (SB). The calibration curve obtained was Y = (9.196e–07) X+ (-0.0045) for SA and Y = (6.783e -07) X + (0.0747) for SB. Coefficient of correlation (R2) was 0.9997 for SA and 0.9969 for SB indicating good linearity of the curve. The chromatograms of the standard sennoside and senna leaf methanolic extract recorded peaks corresponding to sennoside are presented in S8 Fig. The first leaf (young; just opened) recorded 6.0% (w/w) sennoside content, second leaf (two day old) recorded 5.0% (w/w) sennoside content, and third leaf (three days old) recorded 6.2% (w/w) sennoside content which was the highest, whereas the seventh leaf from the top recorded 1.3% which was lowest (Fig 10). The sennoside content of other leaves (8th to 25th leaves) was in the range of 1.5 to 3.0% indicating the variation in the sennoside content with the leaf age.

Bottom Line: A total of 10,763 CDS differentially expressing in both young and mature leaf libraries of which 2,343 (21.7%) CDS were up-regulated in young compared to mature leaf.Several differentially expressed genes found functionally associated with sennoside biosynthesis.We have identified a set of putative genes involved in various secondary metabolite pathways, especially those related to the synthesis of sennosides which will serve as an important platform for public information about gene expression, genomics, and functional genomics in senna.

View Article: PubMed Central - PubMed

Affiliation: ICAR-Directorate of Medicinal and Aromatic Plants Research (DMAPR), Anand, Gujarat, India.

ABSTRACT
Senna (Cassia angustifolia Vahl.) is a world's natural laxative medicinal plant. Laxative properties are due to sennosides (anthraquinone glycosides) natural products. However, little genetic information is available for this species, especially concerning the biosynthetic pathways of sennosides. We present here the transcriptome sequencing of young and mature leaf tissue of Cassia angustifolia using Illumina MiSeq platform that resulted in a total of 6.34 Gb of raw nucleotide sequence. The sequence assembly resulted in 42230 and 37174 transcripts with an average length of 1119 bp and 1467 bp for young and mature leaf, respectively. The transcripts were annotated using NCBI BLAST with 'green plant database (txid 33090)', Swiss Prot, Kyoto Encylcopedia of Genes & Genomes (KEGG), Cluster of Orthologous Gene (COG) and Gene Ontology (GO). Out of the total transcripts, 40138 (95.0%) and 36349 (97.7%) from young and mature leaf, respectively, were annotated by BLASTX against green plant database of NCBI. We used InterProscan to see protein similarity at domain level, a total of 34031 (young leaf) and 32077 (mature leaf) transcripts were annotated against the Pfam domains. All transcripts from young and mature leaf were assigned to 191 KEGG pathways. There were 166 and 159 CDS, respectively, from young and mature leaf involved in metabolism of terpenoids and polyketides. Many CDS encoding enzymes leading to biosynthesis of sennosides were identified. A total of 10,763 CDS differentially expressing in both young and mature leaf libraries of which 2,343 (21.7%) CDS were up-regulated in young compared to mature leaf. Several differentially expressed genes found functionally associated with sennoside biosynthesis. CDS encoding for many CYPs and TF families were identified having probable roles in metabolism of primary as well as secondary metabolites. We developed SSR markers for molecular breeding of senna. We have identified a set of putative genes involved in various secondary metabolite pathways, especially those related to the synthesis of sennosides which will serve as an important platform for public information about gene expression, genomics, and functional genomics in senna.

No MeSH data available.