Limits...
Advances in Electrophysiological Research.

Kamarajan C, Porjesz B - Alcohol Res (2015)

Bottom Line: Electrophysiological measures of brain function are effective tools to understand neurocognitive phenomena and sensitive indicators of pathophysiological processes associated with various clinical conditions, including alcoholism.Researchers have recently developed sophisticated signal-processing techniques to characterize different aspects of brain dynamics, which can aid in identifying the neural mechanisms underlying alcoholism and other related complex disorders.These quantitative measures of brain function also have been successfully used as endophenotypes to identify and help understand genes associated with AUD and related disorders.Translational research also is examining how brain electrophysiological measures potentially can be applied to diagnosis, prevention, and treatment.

View Article: PubMed Central - PubMed

Affiliation: Henri Begleiter Neurodynamics Laboratory, SUNY Downstate Medical Center, Brooklyn, New York.

ABSTRACT
Electrophysiological measures of brain function are effective tools to understand neurocognitive phenomena and sensitive indicators of pathophysiological processes associated with various clinical conditions, including alcoholism. Individuals with alcohol use disorder (AUD) and their high-risk offspring have consistently shown dysfunction in several electrophysiological measures in resting state (i.e., electroencephalogram) and during cognitive tasks (i.e., event-related potentials and event-related oscillations). Researchers have recently developed sophisticated signal-processing techniques to characterize different aspects of brain dynamics, which can aid in identifying the neural mechanisms underlying alcoholism and other related complex disorders.These quantitative measures of brain function also have been successfully used as endophenotypes to identify and help understand genes associated with AUD and related disorders. Translational research also is examining how brain electrophysiological measures potentially can be applied to diagnosis, prevention, and treatment.

Show MeSH

Related in: MedlinePlus

The current source density (CSD) method provides measures of source activations, which are otherwise blurred in the scalp potentials. A1) P3 event-related potential (ERP) topography showing lower P3 amplitude (in microvolts) in alcoholics during both Go and No-Go conditions in a Go/No-Go task. A2) CSD maps (in ampere per squared radius) showing the Go condition with two bilateral sources in control subjects and only a midline source in alcoholics and illustrating the No-Go condition with a stronger, more focused source over the central region in control subjects and a weaker, more diffuse source over the central and posterior regions in alcoholics (Kamarajan et al. 2005a). B1) Topography of event-related oscillations (EROs) theta power (in microvolts squared) in alcoholics and control subjects during the loss condition in an monetary gambling tasks (MGT) task, plotted for ERO theta power during the N2-P3 complex (200 to 500 ms). B2) CSD maps of ERO theta activity showing a single and stronger midline prefrontal source during the loss condition in control subjects contrasted with bilateral and weaker prefrontal sources in alcoholics; during the gain condition, control subjects had well-defined anterior and posterior sources whereas alcoholics showed weaker and more diffuse sources (Kamarajan et al. 2012).
© Copyright Policy - public-domain
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4476604&req=5

f1-arcr-37-1-53: The current source density (CSD) method provides measures of source activations, which are otherwise blurred in the scalp potentials. A1) P3 event-related potential (ERP) topography showing lower P3 amplitude (in microvolts) in alcoholics during both Go and No-Go conditions in a Go/No-Go task. A2) CSD maps (in ampere per squared radius) showing the Go condition with two bilateral sources in control subjects and only a midline source in alcoholics and illustrating the No-Go condition with a stronger, more focused source over the central region in control subjects and a weaker, more diffuse source over the central and posterior regions in alcoholics (Kamarajan et al. 2005a). B1) Topography of event-related oscillations (EROs) theta power (in microvolts squared) in alcoholics and control subjects during the loss condition in an monetary gambling tasks (MGT) task, plotted for ERO theta power during the N2-P3 complex (200 to 500 ms). B2) CSD maps of ERO theta activity showing a single and stronger midline prefrontal source during the loss condition in control subjects contrasted with bilateral and weaker prefrontal sources in alcoholics; during the gain condition, control subjects had well-defined anterior and posterior sources whereas alcoholics showed weaker and more diffuse sources (Kamarajan et al. 2012).

Mentions: CSD studies in alcoholism also revealed region-specific activations and altered topographic features. In a visual category-matching task, Ji and colleagues (1999) reported suppressed activations at the left temporal-occipital areas in alcoholics during both matching and nonmatching conditions (around 250 ms). In a Go/No-Go task, Kamarajan and colleagues (2005a) found that alcoholics had lower P3 amplitudes and a more diffuse and weaker P3 source without the prefrontal sink, which was observed in the control subjects during the No-Go condition (see figure 1, panels A1 and A2). Further, Kamarajan and colleagues (2012) compared topographic patterns of ERO theta activity representing total theta power with CSD maps computed from theta amplitude data extracted within the time interval of 200 to 500 ms during the feedback of loss and gain during a single-outcome monetary gambling task, with a bet of either 10 cents or 50 cents, and found low theta power and lower CSD activations in alcoholics along with topographic differences between groups (see figure 1, panels B1 and B2).


Advances in Electrophysiological Research.

Kamarajan C, Porjesz B - Alcohol Res (2015)

The current source density (CSD) method provides measures of source activations, which are otherwise blurred in the scalp potentials. A1) P3 event-related potential (ERP) topography showing lower P3 amplitude (in microvolts) in alcoholics during both Go and No-Go conditions in a Go/No-Go task. A2) CSD maps (in ampere per squared radius) showing the Go condition with two bilateral sources in control subjects and only a midline source in alcoholics and illustrating the No-Go condition with a stronger, more focused source over the central region in control subjects and a weaker, more diffuse source over the central and posterior regions in alcoholics (Kamarajan et al. 2005a). B1) Topography of event-related oscillations (EROs) theta power (in microvolts squared) in alcoholics and control subjects during the loss condition in an monetary gambling tasks (MGT) task, plotted for ERO theta power during the N2-P3 complex (200 to 500 ms). B2) CSD maps of ERO theta activity showing a single and stronger midline prefrontal source during the loss condition in control subjects contrasted with bilateral and weaker prefrontal sources in alcoholics; during the gain condition, control subjects had well-defined anterior and posterior sources whereas alcoholics showed weaker and more diffuse sources (Kamarajan et al. 2012).
© Copyright Policy - public-domain
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4476604&req=5

f1-arcr-37-1-53: The current source density (CSD) method provides measures of source activations, which are otherwise blurred in the scalp potentials. A1) P3 event-related potential (ERP) topography showing lower P3 amplitude (in microvolts) in alcoholics during both Go and No-Go conditions in a Go/No-Go task. A2) CSD maps (in ampere per squared radius) showing the Go condition with two bilateral sources in control subjects and only a midline source in alcoholics and illustrating the No-Go condition with a stronger, more focused source over the central region in control subjects and a weaker, more diffuse source over the central and posterior regions in alcoholics (Kamarajan et al. 2005a). B1) Topography of event-related oscillations (EROs) theta power (in microvolts squared) in alcoholics and control subjects during the loss condition in an monetary gambling tasks (MGT) task, plotted for ERO theta power during the N2-P3 complex (200 to 500 ms). B2) CSD maps of ERO theta activity showing a single and stronger midline prefrontal source during the loss condition in control subjects contrasted with bilateral and weaker prefrontal sources in alcoholics; during the gain condition, control subjects had well-defined anterior and posterior sources whereas alcoholics showed weaker and more diffuse sources (Kamarajan et al. 2012).
Mentions: CSD studies in alcoholism also revealed region-specific activations and altered topographic features. In a visual category-matching task, Ji and colleagues (1999) reported suppressed activations at the left temporal-occipital areas in alcoholics during both matching and nonmatching conditions (around 250 ms). In a Go/No-Go task, Kamarajan and colleagues (2005a) found that alcoholics had lower P3 amplitudes and a more diffuse and weaker P3 source without the prefrontal sink, which was observed in the control subjects during the No-Go condition (see figure 1, panels A1 and A2). Further, Kamarajan and colleagues (2012) compared topographic patterns of ERO theta activity representing total theta power with CSD maps computed from theta amplitude data extracted within the time interval of 200 to 500 ms during the feedback of loss and gain during a single-outcome monetary gambling task, with a bet of either 10 cents or 50 cents, and found low theta power and lower CSD activations in alcoholics along with topographic differences between groups (see figure 1, panels B1 and B2).

Bottom Line: Electrophysiological measures of brain function are effective tools to understand neurocognitive phenomena and sensitive indicators of pathophysiological processes associated with various clinical conditions, including alcoholism.Researchers have recently developed sophisticated signal-processing techniques to characterize different aspects of brain dynamics, which can aid in identifying the neural mechanisms underlying alcoholism and other related complex disorders.These quantitative measures of brain function also have been successfully used as endophenotypes to identify and help understand genes associated with AUD and related disorders.Translational research also is examining how brain electrophysiological measures potentially can be applied to diagnosis, prevention, and treatment.

View Article: PubMed Central - PubMed

Affiliation: Henri Begleiter Neurodynamics Laboratory, SUNY Downstate Medical Center, Brooklyn, New York.

ABSTRACT
Electrophysiological measures of brain function are effective tools to understand neurocognitive phenomena and sensitive indicators of pathophysiological processes associated with various clinical conditions, including alcoholism. Individuals with alcohol use disorder (AUD) and their high-risk offspring have consistently shown dysfunction in several electrophysiological measures in resting state (i.e., electroencephalogram) and during cognitive tasks (i.e., event-related potentials and event-related oscillations). Researchers have recently developed sophisticated signal-processing techniques to characterize different aspects of brain dynamics, which can aid in identifying the neural mechanisms underlying alcoholism and other related complex disorders.These quantitative measures of brain function also have been successfully used as endophenotypes to identify and help understand genes associated with AUD and related disorders. Translational research also is examining how brain electrophysiological measures potentially can be applied to diagnosis, prevention, and treatment.

Show MeSH
Related in: MedlinePlus