Limits...
Neuroplasticity in Human Alcoholism: Studies of Extended Abstinence with Potential Treatment Implications.

Fein G, Cardenas VA - Alcohol Res (2015)

Bottom Line: Alcoholism is characterized by a lack of control over excessive alcohol consumption despite significant negative consequences.This impulsive and compulsive behavior may be related to functional abnormalities within networks of brain regions responsible for how we make decisions.The abnormalities may result in strengthened networks related to appetitive drive-or the need to fulfill desires-and simultaneously weakened networks that exercise control over behaviors.

View Article: PubMed Central - PubMed

Affiliation: Neurobehavioral Research, Inc., Honolulu, Hawaii.

ABSTRACT
Alcoholism is characterized by a lack of control over excessive alcohol consumption despite significant negative consequences. This impulsive and compulsive behavior may be related to functional abnormalities within networks of brain regions responsible for how we make decisions. The abnormalities may result in strengthened networks related to appetitive drive-or the need to fulfill desires-and simultaneously weakened networks that exercise control over behaviors. Studies using functional magnetic resonance imaging (fMRI) in abstinent alcoholics suggest that abstinence is associated with changes in the tone of such networks, decreasing resting tone in appetitive drive networks, and increasing resting tone in inhibitory control networks to support continued abstinence. Identifying electroencephalographic (EEG) measures of resting tone in these networks initially identified using fMRI, and establishing in longitudinal studies that these abstinence-related changes in network tone are progressive would motivate treatment initiatives to facilitate these changes in network tone, thereby supporting successful ongoing abstinence.

Show MeSH

Related in: MedlinePlus

fMRI resting-state synchrony within the executive control network is shown. (A) The voxels with activity synchronous with the subgenual anterior cingulate cortex (sgACC, shown in green on the left brain image) are located in the right dorsolateral prefrontal cortex (DLPFC) and are overlaid in red on the right brain image. The voxels with activity synchronous with the bilateral nucleus accumbens (NAcc, shown in yellow) are located in the left DLPFC and are overlaid in red on the right brain image. The right DLPFC is associated with emotion regulation, and the left DLPFC is associated with inhibitory control. (B) The average Z-scores indexing synchrony between the NAcc and left DLPFC (top) and between the sgACC and right DLPFC (bottom) are shown for non–substance-abusing control subjects (NSAC), short-term abstinent alcoholics (STAA), long-term abstinent alcoholics (LTAA), and stimulus-dependent long-term abstinent alcoholics (LTAAS). The LTAA show significantly greater synchrony than NSAC and STAA, with STAA and LTAAS synchrony values slightly greater than NSAC, between inhibitory control brain regions. Both LTAA and LTAAS show significantly greater synchrony than NSAC, with STAA values midway between NSAC and LTAA, between emotion regulation brain regions.
© Copyright Policy - public-domain
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4476599&req=5

f2-arcr-37-1-125: fMRI resting-state synchrony within the executive control network is shown. (A) The voxels with activity synchronous with the subgenual anterior cingulate cortex (sgACC, shown in green on the left brain image) are located in the right dorsolateral prefrontal cortex (DLPFC) and are overlaid in red on the right brain image. The voxels with activity synchronous with the bilateral nucleus accumbens (NAcc, shown in yellow) are located in the left DLPFC and are overlaid in red on the right brain image. The right DLPFC is associated with emotion regulation, and the left DLPFC is associated with inhibitory control. (B) The average Z-scores indexing synchrony between the NAcc and left DLPFC (top) and between the sgACC and right DLPFC (bottom) are shown for non–substance-abusing control subjects (NSAC), short-term abstinent alcoholics (STAA), long-term abstinent alcoholics (LTAA), and stimulus-dependent long-term abstinent alcoholics (LTAAS). The LTAA show significantly greater synchrony than NSAC and STAA, with STAA and LTAAS synchrony values slightly greater than NSAC, between inhibitory control brain regions. Both LTAA and LTAAS show significantly greater synchrony than NSAC, with STAA values midway between NSAC and LTAA, between emotion regulation brain regions.

Mentions: Compared with NSAC subjects, LTAA subjects showed (1) decreased synchrony of limbic reward regions (e.g., caudate and thalamus) with both bilateral NAcc and sgACC seeds (figure 1) and (2) increased synchrony of bilateral NAcc seeds with left DLPFC (suggesting greater inhibitory control) and between the sgACC seed and right DLPFC (consistent with greater emotion regulation) (figure 2). The synchrony of bilateral NAcc seeds and left DLPFC was positively correlated with IED task performance outside of the scanner, suggesting that subjects with greater synchrony in the executive control network were better able to inhibit a learned response when a new rule was introduced. Additionally, duration of abstinence in LTAA was negatively correlated with the synchrony between sgACC and right DLPFC.


Neuroplasticity in Human Alcoholism: Studies of Extended Abstinence with Potential Treatment Implications.

Fein G, Cardenas VA - Alcohol Res (2015)

fMRI resting-state synchrony within the executive control network is shown. (A) The voxels with activity synchronous with the subgenual anterior cingulate cortex (sgACC, shown in green on the left brain image) are located in the right dorsolateral prefrontal cortex (DLPFC) and are overlaid in red on the right brain image. The voxels with activity synchronous with the bilateral nucleus accumbens (NAcc, shown in yellow) are located in the left DLPFC and are overlaid in red on the right brain image. The right DLPFC is associated with emotion regulation, and the left DLPFC is associated with inhibitory control. (B) The average Z-scores indexing synchrony between the NAcc and left DLPFC (top) and between the sgACC and right DLPFC (bottom) are shown for non–substance-abusing control subjects (NSAC), short-term abstinent alcoholics (STAA), long-term abstinent alcoholics (LTAA), and stimulus-dependent long-term abstinent alcoholics (LTAAS). The LTAA show significantly greater synchrony than NSAC and STAA, with STAA and LTAAS synchrony values slightly greater than NSAC, between inhibitory control brain regions. Both LTAA and LTAAS show significantly greater synchrony than NSAC, with STAA values midway between NSAC and LTAA, between emotion regulation brain regions.
© Copyright Policy - public-domain
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4476599&req=5

f2-arcr-37-1-125: fMRI resting-state synchrony within the executive control network is shown. (A) The voxels with activity synchronous with the subgenual anterior cingulate cortex (sgACC, shown in green on the left brain image) are located in the right dorsolateral prefrontal cortex (DLPFC) and are overlaid in red on the right brain image. The voxels with activity synchronous with the bilateral nucleus accumbens (NAcc, shown in yellow) are located in the left DLPFC and are overlaid in red on the right brain image. The right DLPFC is associated with emotion regulation, and the left DLPFC is associated with inhibitory control. (B) The average Z-scores indexing synchrony between the NAcc and left DLPFC (top) and between the sgACC and right DLPFC (bottom) are shown for non–substance-abusing control subjects (NSAC), short-term abstinent alcoholics (STAA), long-term abstinent alcoholics (LTAA), and stimulus-dependent long-term abstinent alcoholics (LTAAS). The LTAA show significantly greater synchrony than NSAC and STAA, with STAA and LTAAS synchrony values slightly greater than NSAC, between inhibitory control brain regions. Both LTAA and LTAAS show significantly greater synchrony than NSAC, with STAA values midway between NSAC and LTAA, between emotion regulation brain regions.
Mentions: Compared with NSAC subjects, LTAA subjects showed (1) decreased synchrony of limbic reward regions (e.g., caudate and thalamus) with both bilateral NAcc and sgACC seeds (figure 1) and (2) increased synchrony of bilateral NAcc seeds with left DLPFC (suggesting greater inhibitory control) and between the sgACC seed and right DLPFC (consistent with greater emotion regulation) (figure 2). The synchrony of bilateral NAcc seeds and left DLPFC was positively correlated with IED task performance outside of the scanner, suggesting that subjects with greater synchrony in the executive control network were better able to inhibit a learned response when a new rule was introduced. Additionally, duration of abstinence in LTAA was negatively correlated with the synchrony between sgACC and right DLPFC.

Bottom Line: Alcoholism is characterized by a lack of control over excessive alcohol consumption despite significant negative consequences.This impulsive and compulsive behavior may be related to functional abnormalities within networks of brain regions responsible for how we make decisions.The abnormalities may result in strengthened networks related to appetitive drive-or the need to fulfill desires-and simultaneously weakened networks that exercise control over behaviors.

View Article: PubMed Central - PubMed

Affiliation: Neurobehavioral Research, Inc., Honolulu, Hawaii.

ABSTRACT
Alcoholism is characterized by a lack of control over excessive alcohol consumption despite significant negative consequences. This impulsive and compulsive behavior may be related to functional abnormalities within networks of brain regions responsible for how we make decisions. The abnormalities may result in strengthened networks related to appetitive drive-or the need to fulfill desires-and simultaneously weakened networks that exercise control over behaviors. Studies using functional magnetic resonance imaging (fMRI) in abstinent alcoholics suggest that abstinence is associated with changes in the tone of such networks, decreasing resting tone in appetitive drive networks, and increasing resting tone in inhibitory control networks to support continued abstinence. Identifying electroencephalographic (EEG) measures of resting tone in these networks initially identified using fMRI, and establishing in longitudinal studies that these abstinence-related changes in network tone are progressive would motivate treatment initiatives to facilitate these changes in network tone, thereby supporting successful ongoing abstinence.

Show MeSH
Related in: MedlinePlus