Limits...
Multifaceted applications of bile salts in pharmacy: an emphasis on nanomedicine.

Elnaggar YS - Int J Nanomedicine (2015)

Bottom Line: This review is the first to gather major pharmaceutical applications of BSs from endogenous organotropism up to integration into nanomedicine, with a greater focus on the latter domain.The comparative advantages of BS-integrated nanomedicines over conventional nanocarriers have been noted.Paradoxical effects, current pitfalls, future perspectives, and opinions have also been outlined.

View Article: PubMed Central - PubMed

Affiliation: Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.

ABSTRACT
The human body has long provided pharmaceutical science with biomaterials of interesting applications. Bile salts (BSs) are biomaterials reminiscent of traditional surfactants with peculiar structure and self-assembled topologies. In the pharmaceutical field, BSs were employed on the basis of two different concepts. The first concept exploited BSs' metabolic and homeostatic functions in disease modulation, whereas the second one utilized BSs' potential to modify drug-delivery characteristics, which recently involved nanotechnology. This review is the first to gather major pharmaceutical applications of BSs from endogenous organotropism up to integration into nanomedicine, with a greater focus on the latter domain. Endogenous applications highlighted the role of BS in modulating hypercholesterolemia and cancer therapy in view of enterohepatic circulation. In addition, recent BS-integrated nanomedicines have been surveyed, chiefly size-tunable cholate nanoparticles, BS-lecithin mixed micelles, bilosomes, probilosomes, and surface-engineered bilosomes. A greater emphasis has been laid on nanosystems for vaccine and cancer therapy. The comparative advantages of BS-integrated nanomedicines over conventional nanocarriers have been noted. Paradoxical effects, current pitfalls, future perspectives, and opinions have also been outlined.

No MeSH data available.


Related in: MedlinePlus

Diagrammatic representation of BS stabilizing effect of oral vesicles containing protein (A) ruptured liposomal vesicle prior to reaching M-cell; (B) intact bilosomes retaining antigen offering protection therefore continue to transit toward M-Cell.Note: Modified from Wilkhu et al.99
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4472153&req=5

f6-ijn-10-3955: Diagrammatic representation of BS stabilizing effect of oral vesicles containing protein (A) ruptured liposomal vesicle prior to reaching M-cell; (B) intact bilosomes retaining antigen offering protection therefore continue to transit toward M-Cell.Note: Modified from Wilkhu et al.99

Mentions: In view of the complexity of the gastrointestinal physiology, the exact mechanism of enhanced bioavailability of oral bilosomes has not so far been fully elucidated. One can say it is a consequence of the interplay between many factors including the protective effect against GIT harsh conditions, membrane fluidizing ability, and physicochemical properties of incorporated BS.31 Compared with conventional vesicles, bilosomes were reported to possess significantly higher stability and protective properties against gastric gastrointestinal enzymes, pH and bile content. Such an effect could be attributed to the remarkable protective effect against damage by BSs and protease (Figure 6). Maintenance of intact vesicles in GIT for prolonged periods of time would facilitate their uptake by M cells in the Peyer’s patch.29 Furthermore, the ultradeformability of liposomes containing BSs may allow carrier-mediated transmembrane absorption.41


Multifaceted applications of bile salts in pharmacy: an emphasis on nanomedicine.

Elnaggar YS - Int J Nanomedicine (2015)

Diagrammatic representation of BS stabilizing effect of oral vesicles containing protein (A) ruptured liposomal vesicle prior to reaching M-cell; (B) intact bilosomes retaining antigen offering protection therefore continue to transit toward M-Cell.Note: Modified from Wilkhu et al.99
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4472153&req=5

f6-ijn-10-3955: Diagrammatic representation of BS stabilizing effect of oral vesicles containing protein (A) ruptured liposomal vesicle prior to reaching M-cell; (B) intact bilosomes retaining antigen offering protection therefore continue to transit toward M-Cell.Note: Modified from Wilkhu et al.99
Mentions: In view of the complexity of the gastrointestinal physiology, the exact mechanism of enhanced bioavailability of oral bilosomes has not so far been fully elucidated. One can say it is a consequence of the interplay between many factors including the protective effect against GIT harsh conditions, membrane fluidizing ability, and physicochemical properties of incorporated BS.31 Compared with conventional vesicles, bilosomes were reported to possess significantly higher stability and protective properties against gastric gastrointestinal enzymes, pH and bile content. Such an effect could be attributed to the remarkable protective effect against damage by BSs and protease (Figure 6). Maintenance of intact vesicles in GIT for prolonged periods of time would facilitate their uptake by M cells in the Peyer’s patch.29 Furthermore, the ultradeformability of liposomes containing BSs may allow carrier-mediated transmembrane absorption.41

Bottom Line: This review is the first to gather major pharmaceutical applications of BSs from endogenous organotropism up to integration into nanomedicine, with a greater focus on the latter domain.The comparative advantages of BS-integrated nanomedicines over conventional nanocarriers have been noted.Paradoxical effects, current pitfalls, future perspectives, and opinions have also been outlined.

View Article: PubMed Central - PubMed

Affiliation: Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.

ABSTRACT
The human body has long provided pharmaceutical science with biomaterials of interesting applications. Bile salts (BSs) are biomaterials reminiscent of traditional surfactants with peculiar structure and self-assembled topologies. In the pharmaceutical field, BSs were employed on the basis of two different concepts. The first concept exploited BSs' metabolic and homeostatic functions in disease modulation, whereas the second one utilized BSs' potential to modify drug-delivery characteristics, which recently involved nanotechnology. This review is the first to gather major pharmaceutical applications of BSs from endogenous organotropism up to integration into nanomedicine, with a greater focus on the latter domain. Endogenous applications highlighted the role of BS in modulating hypercholesterolemia and cancer therapy in view of enterohepatic circulation. In addition, recent BS-integrated nanomedicines have been surveyed, chiefly size-tunable cholate nanoparticles, BS-lecithin mixed micelles, bilosomes, probilosomes, and surface-engineered bilosomes. A greater emphasis has been laid on nanosystems for vaccine and cancer therapy. The comparative advantages of BS-integrated nanomedicines over conventional nanocarriers have been noted. Paradoxical effects, current pitfalls, future perspectives, and opinions have also been outlined.

No MeSH data available.


Related in: MedlinePlus