Limits...
Changes in Lignin and Polysaccharide Components in 13 Cultivars of Rice Straw following Dilute Acid Pretreatment as Studied by Solution-State 2D 1H-13C NMR.

Teramura H, Sasaki K, Oshima T, Aikawa S, Matsuda F, Okamoto M, Shirai T, Kawaguchi H, Ogino C, Yamasaki M, Kikuchi J, Kondo A - PLoS ONE (2015)

Bottom Line: In contrast, intensities of most (11 of 13) peaks related to lignin aliphatic linkages or ferulate decreased.Decreased heterogeneity in the intensities of three peaks related to cellulose components in acid-insoluble residues resulted in similar glucose yield (0.45-0.59 g/g-dry biomass).These results showed the fate of lignin and polysaccharide components by pretreatment, suggesting that lignin aromatic regions and cellulose components were retained in the acid insoluble residues and starch-derived components were transformed into glucose, 5-HMF, and formate in the liquid hydrolysate.

View Article: PubMed Central - PubMed

Affiliation: Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Rokkodaicho, Nada-ku, Kobe, Hyogo, Japan.

ABSTRACT
A renewable raw material, rice straw is pretreated for biorefinery usage. Solution-state two-dimensional (2D) 1H-13 C hetero-nuclear single quantum coherence (HSQC) nuclear magnetic resonance (NMR) spectroscopy, was used to analyze 13 cultivars of rice straw before and after dilute acid pretreatment, to characterize general changes in the lignin and polysaccharide components. Intensities of most (15 of 16) peaks related to lignin aromatic regions, such as p-coumarate, guaiacyl, syringyl, p-hydroxyphenyl, and cinnamyl alcohol, and methoxyl, increased or remained unchanged after pretreatment. In contrast, intensities of most (11 of 13) peaks related to lignin aliphatic linkages or ferulate decreased. Decreased heterogeneity in the intensities of three peaks related to cellulose components in acid-insoluble residues resulted in similar glucose yield (0.45-0.59 g/g-dry biomass). Starch-derived components showed positive correlations (r = 0.71 to 0.96) with glucose, 5-hydroxymethylfurfural (5-HMF), and formate concentrations in the liquid hydrolysates, and negative correlations (r = -0.95 to -0.97) with xylose concentration and acid-insoluble residue yield. These results showed the fate of lignin and polysaccharide components by pretreatment, suggesting that lignin aromatic regions and cellulose components were retained in the acid insoluble residues and starch-derived components were transformed into glucose, 5-HMF, and formate in the liquid hydrolysate.

No MeSH data available.


Related in: MedlinePlus

Relative peak intensity of acid-insoluble residue to that of raw biomass of 13 cultivars of rice straw.Relative peak intensity of (A) hemicellulose and (B) cellulose and starch with same amount of raw rice straw and the acid-insoluble residue. Vertical axes indicate relative peak intensity (acid-insoluble residue/raw biomass). Peak intensities of the acid-insoluble residue were significantly different than those of raw biomass (*: P<0.05; **: P<0.01). ROI numbers from Table 1 are shown in parentheses. B) Structural formula of each compounds.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4470627&req=5

pone.0128417.g003: Relative peak intensity of acid-insoluble residue to that of raw biomass of 13 cultivars of rice straw.Relative peak intensity of (A) hemicellulose and (B) cellulose and starch with same amount of raw rice straw and the acid-insoluble residue. Vertical axes indicate relative peak intensity (acid-insoluble residue/raw biomass). Peak intensities of the acid-insoluble residue were significantly different than those of raw biomass (*: P<0.05; **: P<0.01). ROI numbers from Table 1 are shown in parentheses. B) Structural formula of each compounds.

Mentions: A comparison of the 2D 1H-13C HSQC-NMR spectral peak intensities of raw rice straw and acid-insoluble residue revealed changes in the lignin and polysaccharide components following dilute acid pretreatment (for analysis of Nipponbare in Fig 1). The positions and annotations of ROI are listed in Table 1. To determine the general trend of changes in the components, the relative peak intensities of raw biomass and acid-insoluble residue produced by dilute acid pretreatment were calculated for the 13 cultivars examined in this study (Fig 2, Fig 3 and S2 Fig).


Changes in Lignin and Polysaccharide Components in 13 Cultivars of Rice Straw following Dilute Acid Pretreatment as Studied by Solution-State 2D 1H-13C NMR.

Teramura H, Sasaki K, Oshima T, Aikawa S, Matsuda F, Okamoto M, Shirai T, Kawaguchi H, Ogino C, Yamasaki M, Kikuchi J, Kondo A - PLoS ONE (2015)

Relative peak intensity of acid-insoluble residue to that of raw biomass of 13 cultivars of rice straw.Relative peak intensity of (A) hemicellulose and (B) cellulose and starch with same amount of raw rice straw and the acid-insoluble residue. Vertical axes indicate relative peak intensity (acid-insoluble residue/raw biomass). Peak intensities of the acid-insoluble residue were significantly different than those of raw biomass (*: P<0.05; **: P<0.01). ROI numbers from Table 1 are shown in parentheses. B) Structural formula of each compounds.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4470627&req=5

pone.0128417.g003: Relative peak intensity of acid-insoluble residue to that of raw biomass of 13 cultivars of rice straw.Relative peak intensity of (A) hemicellulose and (B) cellulose and starch with same amount of raw rice straw and the acid-insoluble residue. Vertical axes indicate relative peak intensity (acid-insoluble residue/raw biomass). Peak intensities of the acid-insoluble residue were significantly different than those of raw biomass (*: P<0.05; **: P<0.01). ROI numbers from Table 1 are shown in parentheses. B) Structural formula of each compounds.
Mentions: A comparison of the 2D 1H-13C HSQC-NMR spectral peak intensities of raw rice straw and acid-insoluble residue revealed changes in the lignin and polysaccharide components following dilute acid pretreatment (for analysis of Nipponbare in Fig 1). The positions and annotations of ROI are listed in Table 1. To determine the general trend of changes in the components, the relative peak intensities of raw biomass and acid-insoluble residue produced by dilute acid pretreatment were calculated for the 13 cultivars examined in this study (Fig 2, Fig 3 and S2 Fig).

Bottom Line: In contrast, intensities of most (11 of 13) peaks related to lignin aliphatic linkages or ferulate decreased.Decreased heterogeneity in the intensities of three peaks related to cellulose components in acid-insoluble residues resulted in similar glucose yield (0.45-0.59 g/g-dry biomass).These results showed the fate of lignin and polysaccharide components by pretreatment, suggesting that lignin aromatic regions and cellulose components were retained in the acid insoluble residues and starch-derived components were transformed into glucose, 5-HMF, and formate in the liquid hydrolysate.

View Article: PubMed Central - PubMed

Affiliation: Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Rokkodaicho, Nada-ku, Kobe, Hyogo, Japan.

ABSTRACT
A renewable raw material, rice straw is pretreated for biorefinery usage. Solution-state two-dimensional (2D) 1H-13 C hetero-nuclear single quantum coherence (HSQC) nuclear magnetic resonance (NMR) spectroscopy, was used to analyze 13 cultivars of rice straw before and after dilute acid pretreatment, to characterize general changes in the lignin and polysaccharide components. Intensities of most (15 of 16) peaks related to lignin aromatic regions, such as p-coumarate, guaiacyl, syringyl, p-hydroxyphenyl, and cinnamyl alcohol, and methoxyl, increased or remained unchanged after pretreatment. In contrast, intensities of most (11 of 13) peaks related to lignin aliphatic linkages or ferulate decreased. Decreased heterogeneity in the intensities of three peaks related to cellulose components in acid-insoluble residues resulted in similar glucose yield (0.45-0.59 g/g-dry biomass). Starch-derived components showed positive correlations (r = 0.71 to 0.96) with glucose, 5-hydroxymethylfurfural (5-HMF), and formate concentrations in the liquid hydrolysates, and negative correlations (r = -0.95 to -0.97) with xylose concentration and acid-insoluble residue yield. These results showed the fate of lignin and polysaccharide components by pretreatment, suggesting that lignin aromatic regions and cellulose components were retained in the acid insoluble residues and starch-derived components were transformed into glucose, 5-HMF, and formate in the liquid hydrolysate.

No MeSH data available.


Related in: MedlinePlus