Limits...
Artificial gravity as a countermeasure for mitigating physiological deconditioning during long-duration space missions.

Clément GR, Bukley AP, Paloski WH - Front Syst Neurosci (2015)

Bottom Line: In spite of the experience gained in human space flight since Yuri Gagarin's historical flight in 1961, there has yet to be identified a completely effective countermeasure for mitigating the effects of weightlessness on humans.Hence, the concept of artificial gravity is to provide a broad-spectrum replacement for the gravitational forces that naturally occur on the Earth's surface, thereby avoiding the physiological deconditioning that takes place in weightlessness.Because researchers have long been concerned by the adverse sensorimotor effects that occur in weightlessness as well as in rotating environments, additional study of the complex interactions among sensorimotor and other physiological systems in rotating environments must be undertaken both on Earth and in space before artificial gravity can be implemented.

View Article: PubMed Central - PubMed

Affiliation: Wyle Science and Engineering Group Houston, TX, USA.

ABSTRACT
In spite of the experience gained in human space flight since Yuri Gagarin's historical flight in 1961, there has yet to be identified a completely effective countermeasure for mitigating the effects of weightlessness on humans. Were astronauts to embark upon a journey to Mars today, the 6-month exposure to weightlessness en route would leave them considerably debilitated, even with the implementation of the suite of piece-meal countermeasures currently employed. Continuous or intermittent exposure to simulated gravitational states on board the spacecraft while traveling to and from Mars, also known as artificial gravity, has the potential for enhancing adaptation to Mars gravity and re-adaptation to Earth gravity. Many physiological functions are adversely affected by the weightless environment of spaceflight because they are calibrated for normal, Earth's gravity. Hence, the concept of artificial gravity is to provide a broad-spectrum replacement for the gravitational forces that naturally occur on the Earth's surface, thereby avoiding the physiological deconditioning that takes place in weightlessness. Because researchers have long been concerned by the adverse sensorimotor effects that occur in weightlessness as well as in rotating environments, additional study of the complex interactions among sensorimotor and other physiological systems in rotating environments must be undertaken both on Earth and in space before artificial gravity can be implemented.

No MeSH data available.


Related in: MedlinePlus

Artificial gravity. Continuous rotation of a large spacecraft that creates a centrifugal force of 1 G in the habitat would give the static crewmembers the sensation of standing upright as on Earth. The magnitude of the centrifugal force is function of the square of the rotation rate (ω) times the distance (r) from the axis of rotation. In the example of the spacecraft shown in the insert, a 4-rpm rotation rate would generate 1 G in the crew habitat located at 56 m from the axis of rotation.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4470275&req=5

Figure 1: Artificial gravity. Continuous rotation of a large spacecraft that creates a centrifugal force of 1 G in the habitat would give the static crewmembers the sensation of standing upright as on Earth. The magnitude of the centrifugal force is function of the square of the rotation rate (ω) times the distance (r) from the axis of rotation. In the example of the spacecraft shown in the insert, a 4-rpm rotation rate would generate 1 G in the crew habitat located at 56 m from the axis of rotation.

Mentions: The rationale for using centrifugation is that the resulting centrifugal force provides an apparent gravity vector during rotation about an eccentric axis. The centrifugal force produced by rotation is a function of the square of the angular rate (ω) and the radius (r) of rotation. For example, a crewmember standing on the rim of a habitat rotating at about 4 rpm about an axis located at 56 m would experience the sensation of standing upright closely approximating the same experience as on Earth (Figure 1).


Artificial gravity as a countermeasure for mitigating physiological deconditioning during long-duration space missions.

Clément GR, Bukley AP, Paloski WH - Front Syst Neurosci (2015)

Artificial gravity. Continuous rotation of a large spacecraft that creates a centrifugal force of 1 G in the habitat would give the static crewmembers the sensation of standing upright as on Earth. The magnitude of the centrifugal force is function of the square of the rotation rate (ω) times the distance (r) from the axis of rotation. In the example of the spacecraft shown in the insert, a 4-rpm rotation rate would generate 1 G in the crew habitat located at 56 m from the axis of rotation.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4470275&req=5

Figure 1: Artificial gravity. Continuous rotation of a large spacecraft that creates a centrifugal force of 1 G in the habitat would give the static crewmembers the sensation of standing upright as on Earth. The magnitude of the centrifugal force is function of the square of the rotation rate (ω) times the distance (r) from the axis of rotation. In the example of the spacecraft shown in the insert, a 4-rpm rotation rate would generate 1 G in the crew habitat located at 56 m from the axis of rotation.
Mentions: The rationale for using centrifugation is that the resulting centrifugal force provides an apparent gravity vector during rotation about an eccentric axis. The centrifugal force produced by rotation is a function of the square of the angular rate (ω) and the radius (r) of rotation. For example, a crewmember standing on the rim of a habitat rotating at about 4 rpm about an axis located at 56 m would experience the sensation of standing upright closely approximating the same experience as on Earth (Figure 1).

Bottom Line: In spite of the experience gained in human space flight since Yuri Gagarin's historical flight in 1961, there has yet to be identified a completely effective countermeasure for mitigating the effects of weightlessness on humans.Hence, the concept of artificial gravity is to provide a broad-spectrum replacement for the gravitational forces that naturally occur on the Earth's surface, thereby avoiding the physiological deconditioning that takes place in weightlessness.Because researchers have long been concerned by the adverse sensorimotor effects that occur in weightlessness as well as in rotating environments, additional study of the complex interactions among sensorimotor and other physiological systems in rotating environments must be undertaken both on Earth and in space before artificial gravity can be implemented.

View Article: PubMed Central - PubMed

Affiliation: Wyle Science and Engineering Group Houston, TX, USA.

ABSTRACT
In spite of the experience gained in human space flight since Yuri Gagarin's historical flight in 1961, there has yet to be identified a completely effective countermeasure for mitigating the effects of weightlessness on humans. Were astronauts to embark upon a journey to Mars today, the 6-month exposure to weightlessness en route would leave them considerably debilitated, even with the implementation of the suite of piece-meal countermeasures currently employed. Continuous or intermittent exposure to simulated gravitational states on board the spacecraft while traveling to and from Mars, also known as artificial gravity, has the potential for enhancing adaptation to Mars gravity and re-adaptation to Earth gravity. Many physiological functions are adversely affected by the weightless environment of spaceflight because they are calibrated for normal, Earth's gravity. Hence, the concept of artificial gravity is to provide a broad-spectrum replacement for the gravitational forces that naturally occur on the Earth's surface, thereby avoiding the physiological deconditioning that takes place in weightlessness. Because researchers have long been concerned by the adverse sensorimotor effects that occur in weightlessness as well as in rotating environments, additional study of the complex interactions among sensorimotor and other physiological systems in rotating environments must be undertaken both on Earth and in space before artificial gravity can be implemented.

No MeSH data available.


Related in: MedlinePlus