Limits...
Proper Activity of Histone H3 Lysine 4 (H3K4) Methyltransferase Is Required for Morphogenesis during Zebrafish Cardiogenesis.

Kim JD, Kim E, Koun S, Ham HJ, Rhee M, Kim MJ, Huh TL - Mol. Cells (2015)

Bottom Line: Furthermore, double knock-down by coinjection of smyd3 and setd7 MOs caused the synergistic defects in heart development.As similar to knock-down effect, overexpression of these genes also caused the heart morphogenesis defect in zebrafish.These results indicate that histone modifying enzymes, SMYD3 and SETD7, appear to function synergistically during heart development and their proper functioning is essential for normal heart morphogenesis during development.

View Article: PubMed Central - PubMed

Affiliation: School of Life Science and Biotechnology (BK 21 plus program), Kyungpook National University, Daegu 702-701, Korea.

ABSTRACT
While increasing evidence indicates the important function of histone methylation during development, how this process influences cardiac development in vertebrates has not been explored. Here, we elucidate the functions of two histone H3 lysine 4 (H3K4) methylation enzymes, SMYD3 and SETD7, during zebrafish heart morphogenesis using gene expression profiling by whole mount in situ hybridization and antisense morpholino oligonucleotide (MO)-based gene knockdown. We find both smyd3 and setd7 are highly expressed within developing zebrafish heart and knock-down of these genes led to severe defects in cardiac morphogenesis without altering the expressions pattern of heart markers, including cmlc2, vmhc, and amhc. Furthermore, double knock-down by coinjection of smyd3 and setd7 MOs caused the synergistic defects in heart development. As similar to knock-down effect, overexpression of these genes also caused the heart morphogenesis defect in zebrafish. These results indicate that histone modifying enzymes, SMYD3 and SETD7, appear to function synergistically during heart development and their proper functioning is essential for normal heart morphogenesis during development.

No MeSH data available.


Related in: MedlinePlus

SETD7-deficent embryo shows the developmental heart edema. (A) Design of the splicing blocking morpholino oligo (MO) targeting to setd7. (B) Validation of setd7 MO efficacy. Normal transcript of setd7 presenting RT- PCR by F and R1 primers was largely reduced. (C) The endogenous expression of setd7 was determined by whole mount in situ hybridization experiment in control and setd7 knock-down embryos. (D) Phenotypes of embryos injected control and setd7 MO. Red arrow points to cardiac edema at 48 hpf. Anterior is left.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4469916&req=5

f4-molce-38-6-580: SETD7-deficent embryo shows the developmental heart edema. (A) Design of the splicing blocking morpholino oligo (MO) targeting to setd7. (B) Validation of setd7 MO efficacy. Normal transcript of setd7 presenting RT- PCR by F and R1 primers was largely reduced. (C) The endogenous expression of setd7 was determined by whole mount in situ hybridization experiment in control and setd7 knock-down embryos. (D) Phenotypes of embryos injected control and setd7 MO. Red arrow points to cardiac edema at 48 hpf. Anterior is left.

Mentions: Similarly, we examined the function of SETD7 during development. MOs targeting setd7 was designed in a way to target the junction of exon 1 and intron 1 of setd7 pre-mature mRNA (Fig. 4A). The efficacy of the MO was validated by conventional RT-PCR (Fig. 4B). In the setd7 MO-injected embryos, normal transcript was largely abolished, detecting by PCR primer F+R1 (Fig. 4B). In addition, expression of setd7 was noticeably decreased by MO injection at 22 ss, suggest that setd7 MO is a functional to block the normal transcription of setd7 gene (Fig. 4C). Similar to SMYD3 deficiency, the knock-down embryos of setd7 at optimal concentration (1.0 ng/embryo) displayed cardiac edema (red arrow) without causing any obvious morphological defects (Fig. 4D and data not shown). Collectively, our results illustrate that the proper activities of H3K4 methyltransferases, specifically SMYD3 and SETD7, are important for zebrafish heart formation.


Proper Activity of Histone H3 Lysine 4 (H3K4) Methyltransferase Is Required for Morphogenesis during Zebrafish Cardiogenesis.

Kim JD, Kim E, Koun S, Ham HJ, Rhee M, Kim MJ, Huh TL - Mol. Cells (2015)

SETD7-deficent embryo shows the developmental heart edema. (A) Design of the splicing blocking morpholino oligo (MO) targeting to setd7. (B) Validation of setd7 MO efficacy. Normal transcript of setd7 presenting RT- PCR by F and R1 primers was largely reduced. (C) The endogenous expression of setd7 was determined by whole mount in situ hybridization experiment in control and setd7 knock-down embryos. (D) Phenotypes of embryos injected control and setd7 MO. Red arrow points to cardiac edema at 48 hpf. Anterior is left.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4469916&req=5

f4-molce-38-6-580: SETD7-deficent embryo shows the developmental heart edema. (A) Design of the splicing blocking morpholino oligo (MO) targeting to setd7. (B) Validation of setd7 MO efficacy. Normal transcript of setd7 presenting RT- PCR by F and R1 primers was largely reduced. (C) The endogenous expression of setd7 was determined by whole mount in situ hybridization experiment in control and setd7 knock-down embryos. (D) Phenotypes of embryos injected control and setd7 MO. Red arrow points to cardiac edema at 48 hpf. Anterior is left.
Mentions: Similarly, we examined the function of SETD7 during development. MOs targeting setd7 was designed in a way to target the junction of exon 1 and intron 1 of setd7 pre-mature mRNA (Fig. 4A). The efficacy of the MO was validated by conventional RT-PCR (Fig. 4B). In the setd7 MO-injected embryos, normal transcript was largely abolished, detecting by PCR primer F+R1 (Fig. 4B). In addition, expression of setd7 was noticeably decreased by MO injection at 22 ss, suggest that setd7 MO is a functional to block the normal transcription of setd7 gene (Fig. 4C). Similar to SMYD3 deficiency, the knock-down embryos of setd7 at optimal concentration (1.0 ng/embryo) displayed cardiac edema (red arrow) without causing any obvious morphological defects (Fig. 4D and data not shown). Collectively, our results illustrate that the proper activities of H3K4 methyltransferases, specifically SMYD3 and SETD7, are important for zebrafish heart formation.

Bottom Line: Furthermore, double knock-down by coinjection of smyd3 and setd7 MOs caused the synergistic defects in heart development.As similar to knock-down effect, overexpression of these genes also caused the heart morphogenesis defect in zebrafish.These results indicate that histone modifying enzymes, SMYD3 and SETD7, appear to function synergistically during heart development and their proper functioning is essential for normal heart morphogenesis during development.

View Article: PubMed Central - PubMed

Affiliation: School of Life Science and Biotechnology (BK 21 plus program), Kyungpook National University, Daegu 702-701, Korea.

ABSTRACT
While increasing evidence indicates the important function of histone methylation during development, how this process influences cardiac development in vertebrates has not been explored. Here, we elucidate the functions of two histone H3 lysine 4 (H3K4) methylation enzymes, SMYD3 and SETD7, during zebrafish heart morphogenesis using gene expression profiling by whole mount in situ hybridization and antisense morpholino oligonucleotide (MO)-based gene knockdown. We find both smyd3 and setd7 are highly expressed within developing zebrafish heart and knock-down of these genes led to severe defects in cardiac morphogenesis without altering the expressions pattern of heart markers, including cmlc2, vmhc, and amhc. Furthermore, double knock-down by coinjection of smyd3 and setd7 MOs caused the synergistic defects in heart development. As similar to knock-down effect, overexpression of these genes also caused the heart morphogenesis defect in zebrafish. These results indicate that histone modifying enzymes, SMYD3 and SETD7, appear to function synergistically during heart development and their proper functioning is essential for normal heart morphogenesis during development.

No MeSH data available.


Related in: MedlinePlus