Limits...
Impaired rapid error monitoring but intact error signaling following rostral anterior cingulate cortex lesions in humans.

Maier ME, Di Gregorio F, Muricchio T, Di Pellegrino G - Front Hum Neurosci (2015)

Bottom Line: A correlate of rapid evaluation of behavioral outcomes is the error-related negativity (Ne/ERN) which emerges at the time of the erroneous response over frontal brain areas.The present study investigated this question using error-related brain activity and vocal error signaling responses in seven human patients with lesions in the rostral anterior cingulate cortex (rACC) and adjoining ventromedial prefrontal cortex, while they performed a flanker task.The difference between errors and correct responses was severely attenuated in these patients indicating impaired rapid error monitong, but they showed no impairment in error signaling.

View Article: PubMed Central - PubMed

Affiliation: Department of Psychology, Catholic University of Eichstätt-Ingolstadt Eichstätt, Germany ; Centro Studi e Ricerche in Neuroscienze Cognitive, Polo Scientifico-Didattico di Cesena, Alma Mater Studiorum Università di Bologna Cesena, Italy.

ABSTRACT
Detecting one's own errors and appropriately correcting behavior are crucial for efficient goal-directed performance. A correlate of rapid evaluation of behavioral outcomes is the error-related negativity (Ne/ERN) which emerges at the time of the erroneous response over frontal brain areas. However, whether the error monitoring system's ability to distinguish between errors and correct responses at this early time point is a necessary precondition for the subsequent emergence of error awareness remains unclear. The present study investigated this question using error-related brain activity and vocal error signaling responses in seven human patients with lesions in the rostral anterior cingulate cortex (rACC) and adjoining ventromedial prefrontal cortex, while they performed a flanker task. The difference between errors and correct responses was severely attenuated in these patients indicating impaired rapid error monitong, but they showed no impairment in error signaling. However, impaired rapid error monitoring coincided with a failure to increase response accuracy on trials following errors. These results demonstrate that the error monitoring system's ability to distinguish between errors and correct responses at the time of the response is crucial for adaptive post-error adjustments, but not a necessary precondition for error awareness.

No MeSH data available.


Behavioral Task. The task was to classify the central target arrow with respect to its direction by a manual response. After the manual response, a question mark prompted participants to evaluate their own behavior by saying “giusto” (engl. correct) if they thought having responded correctly or “sbagliato” (engl. wrong) if they thought having responded erroneously.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4469832&req=5

Figure 2: Behavioral Task. The task was to classify the central target arrow with respect to its direction by a manual response. After the manual response, a question mark prompted participants to evaluate their own behavior by saying “giusto” (engl. correct) if they thought having responded correctly or “sbagliato” (engl. wrong) if they thought having responded erroneously.

Mentions: Participants were seated in a dimly lit room in front of a computer screen. They performed a flanker task (Eriksen and Eriksen, 1974) in which they were asked to respond by key-press to the direction of a central target arrowhead (left or right) while ignoring two identical distractor arrowheads presented above and below the target. On 50% of the trials, distractor arrowheads pointed in the same direction as the target (congruent stimuli), while on the other 50% of the trials, distractor arrowheads pointed in the opposite direction of the target (incongruent stimuli). Each arrowhead subtended a visual angle of 0.64° * 0.57° (height * width), and the whole stimulus array subtended a visual angle of 2.22° height. All stimuli were presented in the screen center. An example trial is depicted in Figure 2. On each trial, a white fixation cross was presented for 500 ms. Then, the stimulus appeared for 150 ms followed by a black screen. After the participants’ response, the screen remained black for 500 ms, during which Ne/ERN and Pe could be measured. After this interval, a secondary error awareness task followed. To this end, a white question mark appeared for 1500 ms. Participants were instructed to indicate whether they thought they had responded correctly or erroneously to the stimulus by saying the Italian words “giusto” (English: “correct”) or “sbagliato” (English: “wrong”), respectively, after the appearance of the question mark. The experimenter manually recorded the participants’ vocal response on each trial for later analyses of error awareness. After the question mark, the screen turned black for 1200 ms before the next trial started. If a second response occurred after the initial response (e.g., a spontaneous error correction) during any of the response windows, then this response was recorded as well and the respective interval (first black screen, question mark or second black screen) was restarted. Participants completed eight blocks of 64 trials, each of which was preceded by three randomly drawn practice trials. This amounted to 512 test trials for the analyses. Before the start of the experiment, participants performed one block of 32 trials without the error awareness task, and one block of 64 trials in conjunction with the error awareness task for practice. In addition, participants underwent a practice session on a day preceding the experiment proper. In the practice session, participants first performed five blocks of 32 trials each without the secondary error awareness task. After each of these blocks, participants were instructed to respond more quickly, if their error rate on incongruent trials of the preceding block was below 20%. This was done to ensure a sufficient number of error trials for the analyses. After practicing the flanker task alone, participants performed a mean of five blocks of 64 trials of the flanker task in conjunction with the error awareness task to practice maintaining the required response speed while evaluating their own performance by responding vocally after the appearance of the question mark on each trial.


Impaired rapid error monitoring but intact error signaling following rostral anterior cingulate cortex lesions in humans.

Maier ME, Di Gregorio F, Muricchio T, Di Pellegrino G - Front Hum Neurosci (2015)

Behavioral Task. The task was to classify the central target arrow with respect to its direction by a manual response. After the manual response, a question mark prompted participants to evaluate their own behavior by saying “giusto” (engl. correct) if they thought having responded correctly or “sbagliato” (engl. wrong) if they thought having responded erroneously.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4469832&req=5

Figure 2: Behavioral Task. The task was to classify the central target arrow with respect to its direction by a manual response. After the manual response, a question mark prompted participants to evaluate their own behavior by saying “giusto” (engl. correct) if they thought having responded correctly or “sbagliato” (engl. wrong) if they thought having responded erroneously.
Mentions: Participants were seated in a dimly lit room in front of a computer screen. They performed a flanker task (Eriksen and Eriksen, 1974) in which they were asked to respond by key-press to the direction of a central target arrowhead (left or right) while ignoring two identical distractor arrowheads presented above and below the target. On 50% of the trials, distractor arrowheads pointed in the same direction as the target (congruent stimuli), while on the other 50% of the trials, distractor arrowheads pointed in the opposite direction of the target (incongruent stimuli). Each arrowhead subtended a visual angle of 0.64° * 0.57° (height * width), and the whole stimulus array subtended a visual angle of 2.22° height. All stimuli were presented in the screen center. An example trial is depicted in Figure 2. On each trial, a white fixation cross was presented for 500 ms. Then, the stimulus appeared for 150 ms followed by a black screen. After the participants’ response, the screen remained black for 500 ms, during which Ne/ERN and Pe could be measured. After this interval, a secondary error awareness task followed. To this end, a white question mark appeared for 1500 ms. Participants were instructed to indicate whether they thought they had responded correctly or erroneously to the stimulus by saying the Italian words “giusto” (English: “correct”) or “sbagliato” (English: “wrong”), respectively, after the appearance of the question mark. The experimenter manually recorded the participants’ vocal response on each trial for later analyses of error awareness. After the question mark, the screen turned black for 1200 ms before the next trial started. If a second response occurred after the initial response (e.g., a spontaneous error correction) during any of the response windows, then this response was recorded as well and the respective interval (first black screen, question mark or second black screen) was restarted. Participants completed eight blocks of 64 trials, each of which was preceded by three randomly drawn practice trials. This amounted to 512 test trials for the analyses. Before the start of the experiment, participants performed one block of 32 trials without the error awareness task, and one block of 64 trials in conjunction with the error awareness task for practice. In addition, participants underwent a practice session on a day preceding the experiment proper. In the practice session, participants first performed five blocks of 32 trials each without the secondary error awareness task. After each of these blocks, participants were instructed to respond more quickly, if their error rate on incongruent trials of the preceding block was below 20%. This was done to ensure a sufficient number of error trials for the analyses. After practicing the flanker task alone, participants performed a mean of five blocks of 64 trials of the flanker task in conjunction with the error awareness task to practice maintaining the required response speed while evaluating their own performance by responding vocally after the appearance of the question mark on each trial.

Bottom Line: A correlate of rapid evaluation of behavioral outcomes is the error-related negativity (Ne/ERN) which emerges at the time of the erroneous response over frontal brain areas.The present study investigated this question using error-related brain activity and vocal error signaling responses in seven human patients with lesions in the rostral anterior cingulate cortex (rACC) and adjoining ventromedial prefrontal cortex, while they performed a flanker task.The difference between errors and correct responses was severely attenuated in these patients indicating impaired rapid error monitong, but they showed no impairment in error signaling.

View Article: PubMed Central - PubMed

Affiliation: Department of Psychology, Catholic University of Eichstätt-Ingolstadt Eichstätt, Germany ; Centro Studi e Ricerche in Neuroscienze Cognitive, Polo Scientifico-Didattico di Cesena, Alma Mater Studiorum Università di Bologna Cesena, Italy.

ABSTRACT
Detecting one's own errors and appropriately correcting behavior are crucial for efficient goal-directed performance. A correlate of rapid evaluation of behavioral outcomes is the error-related negativity (Ne/ERN) which emerges at the time of the erroneous response over frontal brain areas. However, whether the error monitoring system's ability to distinguish between errors and correct responses at this early time point is a necessary precondition for the subsequent emergence of error awareness remains unclear. The present study investigated this question using error-related brain activity and vocal error signaling responses in seven human patients with lesions in the rostral anterior cingulate cortex (rACC) and adjoining ventromedial prefrontal cortex, while they performed a flanker task. The difference between errors and correct responses was severely attenuated in these patients indicating impaired rapid error monitong, but they showed no impairment in error signaling. However, impaired rapid error monitoring coincided with a failure to increase response accuracy on trials following errors. These results demonstrate that the error monitoring system's ability to distinguish between errors and correct responses at the time of the response is crucial for adaptive post-error adjustments, but not a necessary precondition for error awareness.

No MeSH data available.