Limits...
Characterisation of Brachycephalic Obstructive Airway Syndrome in French Bulldogs Using Whole-Body Barometric Plethysmography.

Liu NC, Sargan DR, Adams VJ, Ladlow JF - PLoS ONE (2015)

Bottom Line: For development of an objective BOAS classifier, functional Grades 0 and I were considered to have insignificant clinical signs (termed here BOAS-) and Grades II and III to have significant signs (termed here BOAS+).A comparison between owner-perception of BOAS and functional grading revealed that 60 % of owners failed to recognise BOAS in dogs that graded BOAS+ in this study.WBBP flow traces were found to be significantly different between non-brachycephalic controls and Grade 0 French bulldogs; BOAS- and BOAS+ French bulldogs.WBBP offers objective screening for the diagnosis of BOAS in French Bulldogs.

View Article: PubMed Central - PubMed

Affiliation: Department of Veterinary Medicine, University of Cambridge, Cambridge, Cambridgeshire, United Kingdom.

ABSTRACT
Brachycephalic obstructive airway syndrome (BOAS) is an important health and welfare problem in several popular dog breeds. Whole-body barometric plethysmography (WBBP) is a non-invasive method that allows safe and repeated quantitative measurements of respiratory cycles on unsedated dogs. Here respiratory flow traces in French bulldogs from the pet population were characterised using WBBP, and a computational application was developed to recognise affected animals. Eighty-nine French bulldogs and twenty non-brachycephalic controls underwent WBBP testing. A respiratory functional grading system was used on each dog based on respiratory signs (i.e. respiratory noise, effort, etc.) before and after exercise. For development of an objective BOAS classifier, functional Grades 0 and I were considered to have insignificant clinical signs (termed here BOAS-) and Grades II and III to have significant signs (termed here BOAS+). A comparison between owner-perception of BOAS and functional grading revealed that 60 % of owners failed to recognise BOAS in dogs that graded BOAS+ in this study.WBBP flow traces were found to be significantly different between non-brachycephalic controls and Grade 0 French bulldogs; BOAS- and BOAS+ French bulldogs. A classifier was developed using quadratic discriminant analysis of the respiratory parameters to distinguish BOAS- and BOAS + French bulldogs, and a BOAS Index was calculated for each dog. A cut-off value of the BOAS Index was selected based on a receiver operating characteristic (ROC) curve. Sensitivity, specificity, positive predictive value, and negative predictive value of the classifier on the training group (n=69) were 0.97, 0.93, 0.95, and 0.97, respectively. The classifier was validated using a test group of French bulldogs (n=20) with an accuracy of 0.95. WBBP offers objective screening for the diagnosis of BOAS in French Bulldogs. The technique may be applied to other brachycephalic breeds affected by BOAS, and possibly to other respiratory disease in dogs.

No MeSH data available.


Related in: MedlinePlus

WBBP flow waveform illustration for a single respiratory cycle.The flow cycle starts from inspiration (below the zero line of flow rate) then expiration (above the zero line of the flow rate).
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4469695&req=5

pone.0130741.g002: WBBP flow waveform illustration for a single respiratory cycle.The flow cycle starts from inspiration (below the zero line of flow rate) then expiration (above the zero line of the flow rate).

Mentions: An illustration of a WBBP flow waveform for a single breath cycle is shown in Fig 2. Selected respiratory parameters: tidal volume (TV), inspiratory time (Ti), expiratory time (Te), peak inspiratory flow rate (PIF), peak expiratory flow rate (PEF), respiratory rate (RR), and minute ventilation (MV) were used to characterise the WBBP flow waveform. The data processing procedures involved in quantifying a plethysmographic flow waveform comprised: automatically marking the start and finish of each breath cycle using eDacq software; the extraction of trace features associated with body movement or vocalization according to the video recording; and manual exclusion of incorrectly computer-detected respiratory cycles. Breath cycles used in the study were those in which the difference between inspiratory volume and expiratory volume were balanced within 20% and the dog was relaxed and still, and was not panting. The first 20 such breath cycles during wakefulness in each dog’s record were used for subsequent analysis.


Characterisation of Brachycephalic Obstructive Airway Syndrome in French Bulldogs Using Whole-Body Barometric Plethysmography.

Liu NC, Sargan DR, Adams VJ, Ladlow JF - PLoS ONE (2015)

WBBP flow waveform illustration for a single respiratory cycle.The flow cycle starts from inspiration (below the zero line of flow rate) then expiration (above the zero line of the flow rate).
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4469695&req=5

pone.0130741.g002: WBBP flow waveform illustration for a single respiratory cycle.The flow cycle starts from inspiration (below the zero line of flow rate) then expiration (above the zero line of the flow rate).
Mentions: An illustration of a WBBP flow waveform for a single breath cycle is shown in Fig 2. Selected respiratory parameters: tidal volume (TV), inspiratory time (Ti), expiratory time (Te), peak inspiratory flow rate (PIF), peak expiratory flow rate (PEF), respiratory rate (RR), and minute ventilation (MV) were used to characterise the WBBP flow waveform. The data processing procedures involved in quantifying a plethysmographic flow waveform comprised: automatically marking the start and finish of each breath cycle using eDacq software; the extraction of trace features associated with body movement or vocalization according to the video recording; and manual exclusion of incorrectly computer-detected respiratory cycles. Breath cycles used in the study were those in which the difference between inspiratory volume and expiratory volume were balanced within 20% and the dog was relaxed and still, and was not panting. The first 20 such breath cycles during wakefulness in each dog’s record were used for subsequent analysis.

Bottom Line: For development of an objective BOAS classifier, functional Grades 0 and I were considered to have insignificant clinical signs (termed here BOAS-) and Grades II and III to have significant signs (termed here BOAS+).A comparison between owner-perception of BOAS and functional grading revealed that 60 % of owners failed to recognise BOAS in dogs that graded BOAS+ in this study.WBBP flow traces were found to be significantly different between non-brachycephalic controls and Grade 0 French bulldogs; BOAS- and BOAS+ French bulldogs.WBBP offers objective screening for the diagnosis of BOAS in French Bulldogs.

View Article: PubMed Central - PubMed

Affiliation: Department of Veterinary Medicine, University of Cambridge, Cambridge, Cambridgeshire, United Kingdom.

ABSTRACT
Brachycephalic obstructive airway syndrome (BOAS) is an important health and welfare problem in several popular dog breeds. Whole-body barometric plethysmography (WBBP) is a non-invasive method that allows safe and repeated quantitative measurements of respiratory cycles on unsedated dogs. Here respiratory flow traces in French bulldogs from the pet population were characterised using WBBP, and a computational application was developed to recognise affected animals. Eighty-nine French bulldogs and twenty non-brachycephalic controls underwent WBBP testing. A respiratory functional grading system was used on each dog based on respiratory signs (i.e. respiratory noise, effort, etc.) before and after exercise. For development of an objective BOAS classifier, functional Grades 0 and I were considered to have insignificant clinical signs (termed here BOAS-) and Grades II and III to have significant signs (termed here BOAS+). A comparison between owner-perception of BOAS and functional grading revealed that 60 % of owners failed to recognise BOAS in dogs that graded BOAS+ in this study.WBBP flow traces were found to be significantly different between non-brachycephalic controls and Grade 0 French bulldogs; BOAS- and BOAS+ French bulldogs. A classifier was developed using quadratic discriminant analysis of the respiratory parameters to distinguish BOAS- and BOAS + French bulldogs, and a BOAS Index was calculated for each dog. A cut-off value of the BOAS Index was selected based on a receiver operating characteristic (ROC) curve. Sensitivity, specificity, positive predictive value, and negative predictive value of the classifier on the training group (n=69) were 0.97, 0.93, 0.95, and 0.97, respectively. The classifier was validated using a test group of French bulldogs (n=20) with an accuracy of 0.95. WBBP offers objective screening for the diagnosis of BOAS in French Bulldogs. The technique may be applied to other brachycephalic breeds affected by BOAS, and possibly to other respiratory disease in dogs.

No MeSH data available.


Related in: MedlinePlus