Limits...
CdSe/ZnS Quantum Dots-Labeled Mesenchymal Stem Cells for Targeted Fluorescence Imaging of Pancreas Tissues and Therapy of Type 1 Diabetic Rats.

Liu H, Tang W, Li C, Lv P, Wang Z, Liu Y, Zhang C, Bao Y, Chen H, Meng X, Song Y, Xia X, Pan F, Cui D, Shi Y - Nanoscale Res Lett (2015)

Bottom Line: However, the in vivo distribution and therapeutic effects of transplanted MSCs are not clarified well.Statistical differences existed between the blood glucose levels of the diabetic rat control group and MSC-injected diabetic rat group (p < 0.01), and the MSC-injected diabetic rat group displayed lower blood glucose levels.In conclusion, CdSe/ZnS-labeled MSCs can target in vivo pancreas tissues in diabetic rats, and significantly reduce the blood glucose levels in diabetic rats, and own potential application in therapy of diabetic patients in the near future.

View Article: PubMed Central - PubMed

Affiliation: Department of Endocrinology and Metabolism, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, People's Republic of China.

ABSTRACT
Mesenchymal stem cells (MSCs) have been used for therapy of type 1 diabetes mellitus. However, the in vivo distribution and therapeutic effects of transplanted MSCs are not clarified well. Herein, we reported that CdSe/ZnS quantum dots-labeled MSCs were prepared for targeted fluorescence imaging and therapy of pancreas tissues in rat models with type 1 diabetes. CdSe/ZnS quantum dots were synthesized, their biocompatibility was evaluated, and then, the appropriate concentration of quantum dots was selected to label MSCs. CdSe/ZnS quantum dots-labeled MSCs were injected into mouse models with type 1 diabetes via tail vessel and then were observed by using the Bruker In-Vivo F PRO system, and the blood glucose levels were monitored for 8 weeks. Results showed that prepared CdSe/ZnS quantum dots owned good biocompatibility. Significant differences existed in distribution of quantum dots-labeled MSCs between normal control rats and diabetic rats (p < 0.05). The ratios of the fluorescence intensity (RFI) analysis showed an accumulation rate of MSCs in the pancreas of rats in the diabetes group which was about 32 %, while that in the normal control group rats was about 18 %. The blood glucose levels were also monitored for 8 weeks after quantum dots-labeled MSC injection. Statistical differences existed between the blood glucose levels of the diabetic rat control group and MSC-injected diabetic rat group (p < 0.01), and the MSC-injected diabetic rat group displayed lower blood glucose levels. In conclusion, CdSe/ZnS-labeled MSCs can target in vivo pancreas tissues in diabetic rats, and significantly reduce the blood glucose levels in diabetic rats, and own potential application in therapy of diabetic patients in the near future.

No MeSH data available.


Related in: MedlinePlus

Osteogenic and adipogenic differentiation of MSCs. a Calcified colonies after osteogenic induction stained with alizarin red. b Lipid droplet accumulated in an adipo-inductive medium stained with Oil Red O
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4469594&req=5

Fig3: Osteogenic and adipogenic differentiation of MSCs. a Calcified colonies after osteogenic induction stained with alizarin red. b Lipid droplet accumulated in an adipo-inductive medium stained with Oil Red O

Mentions: Firstly, osteogenic differentiation was induced in putative MSC lines by culturing cells in an osteo-inductive medium. After 3 weeks in an inductive medium, the treated population contained numerous positive cells widely distributed in the dish and others grouped into colonies. Alizarin red staining of the extra-cellular calcium in differentiated cells, as shown in Fig. 3a, indicated osteogenic differentiation of MSCs into osteoblasts.Fig. 3


CdSe/ZnS Quantum Dots-Labeled Mesenchymal Stem Cells for Targeted Fluorescence Imaging of Pancreas Tissues and Therapy of Type 1 Diabetic Rats.

Liu H, Tang W, Li C, Lv P, Wang Z, Liu Y, Zhang C, Bao Y, Chen H, Meng X, Song Y, Xia X, Pan F, Cui D, Shi Y - Nanoscale Res Lett (2015)

Osteogenic and adipogenic differentiation of MSCs. a Calcified colonies after osteogenic induction stained with alizarin red. b Lipid droplet accumulated in an adipo-inductive medium stained with Oil Red O
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4469594&req=5

Fig3: Osteogenic and adipogenic differentiation of MSCs. a Calcified colonies after osteogenic induction stained with alizarin red. b Lipid droplet accumulated in an adipo-inductive medium stained with Oil Red O
Mentions: Firstly, osteogenic differentiation was induced in putative MSC lines by culturing cells in an osteo-inductive medium. After 3 weeks in an inductive medium, the treated population contained numerous positive cells widely distributed in the dish and others grouped into colonies. Alizarin red staining of the extra-cellular calcium in differentiated cells, as shown in Fig. 3a, indicated osteogenic differentiation of MSCs into osteoblasts.Fig. 3

Bottom Line: However, the in vivo distribution and therapeutic effects of transplanted MSCs are not clarified well.Statistical differences existed between the blood glucose levels of the diabetic rat control group and MSC-injected diabetic rat group (p < 0.01), and the MSC-injected diabetic rat group displayed lower blood glucose levels.In conclusion, CdSe/ZnS-labeled MSCs can target in vivo pancreas tissues in diabetic rats, and significantly reduce the blood glucose levels in diabetic rats, and own potential application in therapy of diabetic patients in the near future.

View Article: PubMed Central - PubMed

Affiliation: Department of Endocrinology and Metabolism, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, People's Republic of China.

ABSTRACT
Mesenchymal stem cells (MSCs) have been used for therapy of type 1 diabetes mellitus. However, the in vivo distribution and therapeutic effects of transplanted MSCs are not clarified well. Herein, we reported that CdSe/ZnS quantum dots-labeled MSCs were prepared for targeted fluorescence imaging and therapy of pancreas tissues in rat models with type 1 diabetes. CdSe/ZnS quantum dots were synthesized, their biocompatibility was evaluated, and then, the appropriate concentration of quantum dots was selected to label MSCs. CdSe/ZnS quantum dots-labeled MSCs were injected into mouse models with type 1 diabetes via tail vessel and then were observed by using the Bruker In-Vivo F PRO system, and the blood glucose levels were monitored for 8 weeks. Results showed that prepared CdSe/ZnS quantum dots owned good biocompatibility. Significant differences existed in distribution of quantum dots-labeled MSCs between normal control rats and diabetic rats (p < 0.05). The ratios of the fluorescence intensity (RFI) analysis showed an accumulation rate of MSCs in the pancreas of rats in the diabetes group which was about 32 %, while that in the normal control group rats was about 18 %. The blood glucose levels were also monitored for 8 weeks after quantum dots-labeled MSC injection. Statistical differences existed between the blood glucose levels of the diabetic rat control group and MSC-injected diabetic rat group (p < 0.01), and the MSC-injected diabetic rat group displayed lower blood glucose levels. In conclusion, CdSe/ZnS-labeled MSCs can target in vivo pancreas tissues in diabetic rats, and significantly reduce the blood glucose levels in diabetic rats, and own potential application in therapy of diabetic patients in the near future.

No MeSH data available.


Related in: MedlinePlus