Limits...
Effect of almond consumption on vascular function in patients with coronary artery disease: a randomized, controlled, cross-over trial.

Chen CY, Holbrook M, Duess MA, Dohadwala MM, Hamburg NM, Asztalos BF, Milbury PE, Blumberg JB, Vita JA - Nutr J (2015)

Bottom Line: Almonds reduce cardiovascular disease risk via cholesterol reduction, anti-inflammation, glucoregulation, and antioxidation.Further, the ALM diet did not significantly modify the serum lipid profile, blood pressure, C-reactive protein, tumor necrosis factor-α or E-selectin.Thus, the addition of almonds to a NECP Step 1 diet did not significantly impact vascular function, lipid profile or systematic inflammation in CAD patients receiving good medical care and polypharmacy therapies but did improve diet quality without any untoward effect.

View Article: PubMed Central - PubMed

Affiliation: Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA. oliver.chen@tufts.edu.

ABSTRACT

Objective: Almonds reduce cardiovascular disease risk via cholesterol reduction, anti-inflammation, glucoregulation, and antioxidation. The objective of this randomized, controlled, cross-over trial was to determine whether the addition of 85 g almonds daily to a National Cholesterol Education Program (NCEP) Step 1 diet (ALM) for 6 weeks would improve vascular function and inflammation in patients with coronary artery disease (CAD).

Research design and methods: A randomized, controlled, crossover trial was conducted in Boston, MA to test whether as compared to a control NCEP Step 1 diet absent nuts (CON), incorporation of almonds (85 g/day) into the CON diet (ALM) would improve vascular function and inflammation. The study duration was 22 weeks including a 6-weeks run-in period, two 6-weeks intervention phases, and a 4-weeks washout period between the intervention phases. A total of 45 CAD patients (27 F/18 M, 45-77 y, BMI = 20-41 kg/m(2)) completed the study. Drug therapies used by patients were stable throughout the duration of the trial.

Results: The addition of almonds to the CON diet increased plasma α-tocopherol status by a mean of 5.8%, reflecting patient compliance (P ≤0.05). However, the ALM diet did not alter vascular function assessed by measures of flow-mediated dilation, peripheral arterial tonometry, and pulse wave velocity. Further, the ALM diet did not significantly modify the serum lipid profile, blood pressure, C-reactive protein, tumor necrosis factor-α or E-selectin. The ALM diet tended to decrease vascular cell adhesion molecule-1 by 5.3% (P = 0.064) and increase urinary nitric oxide by 17.5% (P = 0.112). The ALM intervention improved the overall quality of the diet by increasing calcium, magnesium, choline, and fiber intakes above the Estimated Average Requirement (EAR) or Recommended Dietary Allowance (RDA).

Conclusions: Thus, the addition of almonds to a NECP Step 1 diet did not significantly impact vascular function, lipid profile or systematic inflammation in CAD patients receiving good medical care and polypharmacy therapies but did improve diet quality without any untoward effect.

Trial registration: The trial was registered with the ClinicalTrials.Gov with the identifier: NCT00782015.

No MeSH data available.


Related in: MedlinePlus

CONSORT flow diagram
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4469426&req=5

Fig1: CONSORT flow diagram

Mentions: Patients with angiographically proven CAD were recruited from the cardiology practice at the Boston Medical Center in Boston, MA Fig. 1 Consecutive patients with CAD coming to the cardiology practice were assessed for eligibility. CAD was confirmed with obstructive lesion(s) on angiogram, history of myocardial infarction, and/or positive stress test. The medical record was also reviewed through the Boston Medical Center electronic medical health record. Other inclusion criteria used to screen eligibility also included: age, 21–80 y; body mass index (BMI), 20–41 kg/m2; body weight, <115 kg; willingness and ability to provide written informed consent; and the ability to understand, participate, and comply with study requirements. The exclusion criteria included: women who are pregnant or planning to become pregnant; clinical history of other major illness including end-stage cancer, renal failure, hepatic failure or other conditions that in the opinion of the study physician make a clinical study inappropriate; treatment with an investigational new drug within the last 30 day; history of a psychological illness or condition; taking dietary supplements (including multivitamins and herbal supplements); and eating any nuts within 1 month of enrollment. Subjects were asked to withhold all vasoactive medications (nitrates, calcium channel blockers, beta blockers, angiotensin converting enzyme inhibitors, and other vasodilators) for 24 h prior to each ultrasound measurement. In our previous study [15], we reported that patients with stable CAD were able to withhold vasoactive medications for 24 h prior to the ultrasound tests without observed adverse effects. Further, a physician was available to determine eligibility and in case of emergencies. The study design was approved by the Institutional Review Boards of Tufts University Health Sciences Campus, Tufts Medical Center, and Boston Medical Center. All participants signed a written informed consent agreement before participating. The study was registered in the ClinicalTrials.gov, and the registration number is “NCT00782015”.


Effect of almond consumption on vascular function in patients with coronary artery disease: a randomized, controlled, cross-over trial.

Chen CY, Holbrook M, Duess MA, Dohadwala MM, Hamburg NM, Asztalos BF, Milbury PE, Blumberg JB, Vita JA - Nutr J (2015)

CONSORT flow diagram
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4469426&req=5

Fig1: CONSORT flow diagram
Mentions: Patients with angiographically proven CAD were recruited from the cardiology practice at the Boston Medical Center in Boston, MA Fig. 1 Consecutive patients with CAD coming to the cardiology practice were assessed for eligibility. CAD was confirmed with obstructive lesion(s) on angiogram, history of myocardial infarction, and/or positive stress test. The medical record was also reviewed through the Boston Medical Center electronic medical health record. Other inclusion criteria used to screen eligibility also included: age, 21–80 y; body mass index (BMI), 20–41 kg/m2; body weight, <115 kg; willingness and ability to provide written informed consent; and the ability to understand, participate, and comply with study requirements. The exclusion criteria included: women who are pregnant or planning to become pregnant; clinical history of other major illness including end-stage cancer, renal failure, hepatic failure or other conditions that in the opinion of the study physician make a clinical study inappropriate; treatment with an investigational new drug within the last 30 day; history of a psychological illness or condition; taking dietary supplements (including multivitamins and herbal supplements); and eating any nuts within 1 month of enrollment. Subjects were asked to withhold all vasoactive medications (nitrates, calcium channel blockers, beta blockers, angiotensin converting enzyme inhibitors, and other vasodilators) for 24 h prior to each ultrasound measurement. In our previous study [15], we reported that patients with stable CAD were able to withhold vasoactive medications for 24 h prior to the ultrasound tests without observed adverse effects. Further, a physician was available to determine eligibility and in case of emergencies. The study design was approved by the Institutional Review Boards of Tufts University Health Sciences Campus, Tufts Medical Center, and Boston Medical Center. All participants signed a written informed consent agreement before participating. The study was registered in the ClinicalTrials.gov, and the registration number is “NCT00782015”.

Bottom Line: Almonds reduce cardiovascular disease risk via cholesterol reduction, anti-inflammation, glucoregulation, and antioxidation.Further, the ALM diet did not significantly modify the serum lipid profile, blood pressure, C-reactive protein, tumor necrosis factor-α or E-selectin.Thus, the addition of almonds to a NECP Step 1 diet did not significantly impact vascular function, lipid profile or systematic inflammation in CAD patients receiving good medical care and polypharmacy therapies but did improve diet quality without any untoward effect.

View Article: PubMed Central - PubMed

Affiliation: Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA. oliver.chen@tufts.edu.

ABSTRACT

Objective: Almonds reduce cardiovascular disease risk via cholesterol reduction, anti-inflammation, glucoregulation, and antioxidation. The objective of this randomized, controlled, cross-over trial was to determine whether the addition of 85 g almonds daily to a National Cholesterol Education Program (NCEP) Step 1 diet (ALM) for 6 weeks would improve vascular function and inflammation in patients with coronary artery disease (CAD).

Research design and methods: A randomized, controlled, crossover trial was conducted in Boston, MA to test whether as compared to a control NCEP Step 1 diet absent nuts (CON), incorporation of almonds (85 g/day) into the CON diet (ALM) would improve vascular function and inflammation. The study duration was 22 weeks including a 6-weeks run-in period, two 6-weeks intervention phases, and a 4-weeks washout period between the intervention phases. A total of 45 CAD patients (27 F/18 M, 45-77 y, BMI = 20-41 kg/m(2)) completed the study. Drug therapies used by patients were stable throughout the duration of the trial.

Results: The addition of almonds to the CON diet increased plasma α-tocopherol status by a mean of 5.8%, reflecting patient compliance (P ≤0.05). However, the ALM diet did not alter vascular function assessed by measures of flow-mediated dilation, peripheral arterial tonometry, and pulse wave velocity. Further, the ALM diet did not significantly modify the serum lipid profile, blood pressure, C-reactive protein, tumor necrosis factor-α or E-selectin. The ALM diet tended to decrease vascular cell adhesion molecule-1 by 5.3% (P = 0.064) and increase urinary nitric oxide by 17.5% (P = 0.112). The ALM intervention improved the overall quality of the diet by increasing calcium, magnesium, choline, and fiber intakes above the Estimated Average Requirement (EAR) or Recommended Dietary Allowance (RDA).

Conclusions: Thus, the addition of almonds to a NECP Step 1 diet did not significantly impact vascular function, lipid profile or systematic inflammation in CAD patients receiving good medical care and polypharmacy therapies but did improve diet quality without any untoward effect.

Trial registration: The trial was registered with the ClinicalTrials.Gov with the identifier: NCT00782015.

No MeSH data available.


Related in: MedlinePlus