Limits...
Gene amplification during differentiation of mammalian neural stem cells in vitro and in vivo.

Fischer U, Backes C, Raslan A, Keller A, Meier C, Meese E - Oncotarget (2015)

Bottom Line: In development of amphibians and flies, gene amplification is one of mechanisms to increase gene expression.Using fluorescence in situ hybridization, we verified the amplification in single cells of primary mouse mesencephalon E14 (embryonic stage) neurosphere cells during differentiation.Gene amplification is not only a cancer-related mechanism but is also conserved in evolution, occurring during differentiation of mammalian neural stem cells.

View Article: PubMed Central - PubMed

Affiliation: Department of Human Genetics, Saarland University, 66421 Homburg/Saar, Germany.

ABSTRACT
In development of amphibians and flies, gene amplification is one of mechanisms to increase gene expression. In mammalian cells, gene amplification seems to be restricted to tumorigenesis and acquiring of drug-resistance in cancer cells. Here, we report a complex gene amplification pattern in mouse neural progenitor cells during differentiation with approximately 10% of the genome involved. Half of the amplified mouse chromosome regions overlap with amplified regions previously reported in human neural progenitor cells, indicating conserved mechanisms during differentiation. Using fluorescence in situ hybridization, we verified the amplification in single cells of primary mouse mesencephalon E14 (embryonic stage) neurosphere cells during differentiation. In vivo we confirmed gene amplifications of the TRP53 gene in cryosections from mouse embryos at stage E11.5. Gene amplification is not only a cancer-related mechanism but is also conserved in evolution, occurring during differentiation of mammalian neural stem cells.

Show MeSH

Related in: MedlinePlus

Relative copy number profiles on mouse chromosomes 11, 10, 9 and 18CGH analysis of SFME cells grown as sphere or differentiation induced with TGF-β revealed multiple amplified and under-replicated regions on mouse chromosome 11 (a), mouse chromosome 9 (b), mouse chromosome 10 (c) and mouse chromosome 18 (d). Relative copy number is plotted at 40 kb resolution using a log2 scale. Localization of BAC clones used for FISH analysis were indicated including known genes: C1QL1, GFAP (RP23–235I12), TRP53 (RP23–150N14), EGFR (RP23–51E21), and COX10 (RP23–40P10) for chromosome 11; S1PR5 (RP23–4A11) for chromosome 9; FZR1 (RP23–421E11), CDK4 (RP23–432F11), ANO4 (RP23–279E23), and TRHDE (RP23–361I2) for chromosome 10; PDGFRb (RP23–143A24) for chromosome 18.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4466667&req=5

Figure 2: Relative copy number profiles on mouse chromosomes 11, 10, 9 and 18CGH analysis of SFME cells grown as sphere or differentiation induced with TGF-β revealed multiple amplified and under-replicated regions on mouse chromosome 11 (a), mouse chromosome 9 (b), mouse chromosome 10 (c) and mouse chromosome 18 (d). Relative copy number is plotted at 40 kb resolution using a log2 scale. Localization of BAC clones used for FISH analysis were indicated including known genes: C1QL1, GFAP (RP23–235I12), TRP53 (RP23–150N14), EGFR (RP23–51E21), and COX10 (RP23–40P10) for chromosome 11; S1PR5 (RP23–4A11) for chromosome 9; FZR1 (RP23–421E11), CDK4 (RP23–432F11), ANO4 (RP23–279E23), and TRHDE (RP23–361I2) for chromosome 10; PDGFRb (RP23–143A24) for chromosome 18.

Mentions: In total we detected 3 amplified regions in undifferentiated SFME sphere cells and 89 amplified chromosomal regions in 24 h-TGF-β-differentiation induced SFME cells. Amplifications were detected on all autosomal chromosomes with no specific clustering on a specific chromosome. In 12 h-FCS-differentiation induced SFME cells we detected only 13 amplified regions. Interestingly 2 out of 13 chromosome regions were solely detectable in FCS-differentiation induced cells and 11 of 13 chromosome regions were detectable under both differentiation induction conditions. The size of the amplified chromosome region varied between 250 kb–22 Mb. Amplified regions are summarized in Table 1. Representative array-CGH plots for mouse chromosomes 11, 9, 10 and 18 are shown in Figure 2a, 2b, 2c and 2d.


Gene amplification during differentiation of mammalian neural stem cells in vitro and in vivo.

Fischer U, Backes C, Raslan A, Keller A, Meier C, Meese E - Oncotarget (2015)

Relative copy number profiles on mouse chromosomes 11, 10, 9 and 18CGH analysis of SFME cells grown as sphere or differentiation induced with TGF-β revealed multiple amplified and under-replicated regions on mouse chromosome 11 (a), mouse chromosome 9 (b), mouse chromosome 10 (c) and mouse chromosome 18 (d). Relative copy number is plotted at 40 kb resolution using a log2 scale. Localization of BAC clones used for FISH analysis were indicated including known genes: C1QL1, GFAP (RP23–235I12), TRP53 (RP23–150N14), EGFR (RP23–51E21), and COX10 (RP23–40P10) for chromosome 11; S1PR5 (RP23–4A11) for chromosome 9; FZR1 (RP23–421E11), CDK4 (RP23–432F11), ANO4 (RP23–279E23), and TRHDE (RP23–361I2) for chromosome 10; PDGFRb (RP23–143A24) for chromosome 18.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4466667&req=5

Figure 2: Relative copy number profiles on mouse chromosomes 11, 10, 9 and 18CGH analysis of SFME cells grown as sphere or differentiation induced with TGF-β revealed multiple amplified and under-replicated regions on mouse chromosome 11 (a), mouse chromosome 9 (b), mouse chromosome 10 (c) and mouse chromosome 18 (d). Relative copy number is plotted at 40 kb resolution using a log2 scale. Localization of BAC clones used for FISH analysis were indicated including known genes: C1QL1, GFAP (RP23–235I12), TRP53 (RP23–150N14), EGFR (RP23–51E21), and COX10 (RP23–40P10) for chromosome 11; S1PR5 (RP23–4A11) for chromosome 9; FZR1 (RP23–421E11), CDK4 (RP23–432F11), ANO4 (RP23–279E23), and TRHDE (RP23–361I2) for chromosome 10; PDGFRb (RP23–143A24) for chromosome 18.
Mentions: In total we detected 3 amplified regions in undifferentiated SFME sphere cells and 89 amplified chromosomal regions in 24 h-TGF-β-differentiation induced SFME cells. Amplifications were detected on all autosomal chromosomes with no specific clustering on a specific chromosome. In 12 h-FCS-differentiation induced SFME cells we detected only 13 amplified regions. Interestingly 2 out of 13 chromosome regions were solely detectable in FCS-differentiation induced cells and 11 of 13 chromosome regions were detectable under both differentiation induction conditions. The size of the amplified chromosome region varied between 250 kb–22 Mb. Amplified regions are summarized in Table 1. Representative array-CGH plots for mouse chromosomes 11, 9, 10 and 18 are shown in Figure 2a, 2b, 2c and 2d.

Bottom Line: In development of amphibians and flies, gene amplification is one of mechanisms to increase gene expression.Using fluorescence in situ hybridization, we verified the amplification in single cells of primary mouse mesencephalon E14 (embryonic stage) neurosphere cells during differentiation.Gene amplification is not only a cancer-related mechanism but is also conserved in evolution, occurring during differentiation of mammalian neural stem cells.

View Article: PubMed Central - PubMed

Affiliation: Department of Human Genetics, Saarland University, 66421 Homburg/Saar, Germany.

ABSTRACT
In development of amphibians and flies, gene amplification is one of mechanisms to increase gene expression. In mammalian cells, gene amplification seems to be restricted to tumorigenesis and acquiring of drug-resistance in cancer cells. Here, we report a complex gene amplification pattern in mouse neural progenitor cells during differentiation with approximately 10% of the genome involved. Half of the amplified mouse chromosome regions overlap with amplified regions previously reported in human neural progenitor cells, indicating conserved mechanisms during differentiation. Using fluorescence in situ hybridization, we verified the amplification in single cells of primary mouse mesencephalon E14 (embryonic stage) neurosphere cells during differentiation. In vivo we confirmed gene amplifications of the TRP53 gene in cryosections from mouse embryos at stage E11.5. Gene amplification is not only a cancer-related mechanism but is also conserved in evolution, occurring during differentiation of mammalian neural stem cells.

Show MeSH
Related in: MedlinePlus