Limits...
Caffeic acid phenethyl ester induced cell cycle arrest and growth inhibition in androgen-independent prostate cancer cells via regulation of Skp2, p53, p21Cip1 and p27Kip1.

Lin HP, Lin CY, Huo C, Hsiao PH, Su LC, Jiang SS, Chan TM, Chang CH, Chen LT, Kung HJ, Wang HD, Chuu CP - Oncotarget (2015)

Bottom Line: CAPE treatment decreased Skp2 and Akt1 protein expression in LNCaP 104-R1 tumors as compared to control group.Overexpression of Skp2, or siRNA knockdown of p21Cip1, p27Kip1, or p53 blocked suppressive effect of CAPE treatment.Co-treatment of CAPE with PI3K inhibitor LY294002 or Bcl-2 inhibitor ABT737 showed synergistic suppressive effects.

View Article: PubMed Central - PubMed

Affiliation: National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan, ROC.

ABSTRACT
Prostate cancer (PCa) patients receiving the androgen ablation therapy ultimately develop recurrent castration-resistant prostate cancer (CRPC) within 1-3 years. Treatment with caffeic acid phenethyl ester (CAPE) suppressed cell survival and proliferation via induction of G1 or G2/M cell cycle arrest in LNCaP 104-R1, DU-145, 22Rv1, and C4-2 CRPC cells. CAPE treatment also inhibited soft agar colony formation and retarded nude mice xenograft growth of LNCaP 104-R1 cells. We identified that CAPE treatment significantly reduced protein abundance of Skp2, Cdk2, Cdk4, Cdk7, Rb, phospho-Rb S807/811, cyclin A, cyclin D1, cyclin H, E2F1, c-Myc, SGK, phospho-p70S6kinase T421/S424, phospho-mTOR Ser2481, phospho-GSK3α Ser21, but induced p21Cip1, p27Kip1, ATF4, cyclin E, p53, TRIB3, phospho-p53 (Ser6, Ser33, Ser46, Ser392), phospho-p38 MAPK Thr180/Tyr182, Chk1, Chk2, phospho-ATM S1981, phospho-ATR S428, and phospho-p90RSK Ser380. CAPE treatment decreased Skp2 and Akt1 protein expression in LNCaP 104-R1 tumors as compared to control group. Overexpression of Skp2, or siRNA knockdown of p21Cip1, p27Kip1, or p53 blocked suppressive effect of CAPE treatment. Co-treatment of CAPE with PI3K inhibitor LY294002 or Bcl-2 inhibitor ABT737 showed synergistic suppressive effects. Our finding suggested that CAPE treatment induced cell cycle arrest and growth inhibition in CRPC cells via regulation of Skp2, p53, p21Cip1, and p27Kip1.

Show MeSH

Related in: MedlinePlus

CAPE treatment affected abundance and phosphorylation of proteins regulating proliferation, cell cycle progression, and survival in LNCaP 104-R1 cells(A) Protein expression of Cdk2, phospho-Cdk2 Thr160, phospho-Cdk2 Thr14, phospho-Cdk2 Tyr15, Cdk4, Cdk7, Skp2, c-Myc, p21Cip1, p27Kip1, Rb, phospho-Rb Ser807/811, cyclin H, cyclin A, cyclin D1, cyclin E, E2F-1, AR, p53, phospho-p53 Ser6, phospho-p53 Ser33, and phospho-p53 Ser46, phospho-p53 Ser392, Chk1, Chk2, phospho-ATM S1981, phospho-ATR S428, and ATF4 in LNCaP 104-R1 cells treated with 0, 10, 20, and 40 μM CAPE for 96 h were assayed by Western blotting. Protein abundance of α-tubulin and β-actin was used as loading control. (B) Proteins expression level was organized in the y-axis of the heatmap based on time of maximal fold change amplitude. Green color indicated decrease of protein expression while red color indicated increase of protein expression under treatment of CAPE.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4466643&req=5

Figure 6: CAPE treatment affected abundance and phosphorylation of proteins regulating proliferation, cell cycle progression, and survival in LNCaP 104-R1 cells(A) Protein expression of Cdk2, phospho-Cdk2 Thr160, phospho-Cdk2 Thr14, phospho-Cdk2 Tyr15, Cdk4, Cdk7, Skp2, c-Myc, p21Cip1, p27Kip1, Rb, phospho-Rb Ser807/811, cyclin H, cyclin A, cyclin D1, cyclin E, E2F-1, AR, p53, phospho-p53 Ser6, phospho-p53 Ser33, and phospho-p53 Ser46, phospho-p53 Ser392, Chk1, Chk2, phospho-ATM S1981, phospho-ATR S428, and ATF4 in LNCaP 104-R1 cells treated with 0, 10, 20, and 40 μM CAPE for 96 h were assayed by Western blotting. Protein abundance of α-tubulin and β-actin was used as loading control. (B) Proteins expression level was organized in the y-axis of the heatmap based on time of maximal fold change amplitude. Green color indicated decrease of protein expression while red color indicated increase of protein expression under treatment of CAPE.

Mentions: Conventional Western blotting assay was then used to confirm the changes of protein expression. CAPE treatment affected proteins regulating cell cycle, proliferation, survival, DNA damage check point, and PI3K-Akt signaling pathway. Expression of Cdk2, phospho-Cdk2 Thr160, Cdk4, Cdk7, Skp2, c-Myc, Rb, phospho-Rb Ser807/811, cyclin A, cyclin D1, cyclin H, and E2F1 proteins was significantly suppressed by CAPE treatment (Figure 6A, 6B), while protein abundance of cyclin E, p27Kip1, p21Cip1, p53, phospho-p53 Ser392, phospho-p53 Ser33, phospho-p53 S6, phospho-p53 Ser46, CHK1, CHK2, phospho-ATM Ser1981, phospho-ATR Ser428, and ATF4 (Figure 6A, 6B) were significantly induced by CAPE treatment.


Caffeic acid phenethyl ester induced cell cycle arrest and growth inhibition in androgen-independent prostate cancer cells via regulation of Skp2, p53, p21Cip1 and p27Kip1.

Lin HP, Lin CY, Huo C, Hsiao PH, Su LC, Jiang SS, Chan TM, Chang CH, Chen LT, Kung HJ, Wang HD, Chuu CP - Oncotarget (2015)

CAPE treatment affected abundance and phosphorylation of proteins regulating proliferation, cell cycle progression, and survival in LNCaP 104-R1 cells(A) Protein expression of Cdk2, phospho-Cdk2 Thr160, phospho-Cdk2 Thr14, phospho-Cdk2 Tyr15, Cdk4, Cdk7, Skp2, c-Myc, p21Cip1, p27Kip1, Rb, phospho-Rb Ser807/811, cyclin H, cyclin A, cyclin D1, cyclin E, E2F-1, AR, p53, phospho-p53 Ser6, phospho-p53 Ser33, and phospho-p53 Ser46, phospho-p53 Ser392, Chk1, Chk2, phospho-ATM S1981, phospho-ATR S428, and ATF4 in LNCaP 104-R1 cells treated with 0, 10, 20, and 40 μM CAPE for 96 h were assayed by Western blotting. Protein abundance of α-tubulin and β-actin was used as loading control. (B) Proteins expression level was organized in the y-axis of the heatmap based on time of maximal fold change amplitude. Green color indicated decrease of protein expression while red color indicated increase of protein expression under treatment of CAPE.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4466643&req=5

Figure 6: CAPE treatment affected abundance and phosphorylation of proteins regulating proliferation, cell cycle progression, and survival in LNCaP 104-R1 cells(A) Protein expression of Cdk2, phospho-Cdk2 Thr160, phospho-Cdk2 Thr14, phospho-Cdk2 Tyr15, Cdk4, Cdk7, Skp2, c-Myc, p21Cip1, p27Kip1, Rb, phospho-Rb Ser807/811, cyclin H, cyclin A, cyclin D1, cyclin E, E2F-1, AR, p53, phospho-p53 Ser6, phospho-p53 Ser33, and phospho-p53 Ser46, phospho-p53 Ser392, Chk1, Chk2, phospho-ATM S1981, phospho-ATR S428, and ATF4 in LNCaP 104-R1 cells treated with 0, 10, 20, and 40 μM CAPE for 96 h were assayed by Western blotting. Protein abundance of α-tubulin and β-actin was used as loading control. (B) Proteins expression level was organized in the y-axis of the heatmap based on time of maximal fold change amplitude. Green color indicated decrease of protein expression while red color indicated increase of protein expression under treatment of CAPE.
Mentions: Conventional Western blotting assay was then used to confirm the changes of protein expression. CAPE treatment affected proteins regulating cell cycle, proliferation, survival, DNA damage check point, and PI3K-Akt signaling pathway. Expression of Cdk2, phospho-Cdk2 Thr160, Cdk4, Cdk7, Skp2, c-Myc, Rb, phospho-Rb Ser807/811, cyclin A, cyclin D1, cyclin H, and E2F1 proteins was significantly suppressed by CAPE treatment (Figure 6A, 6B), while protein abundance of cyclin E, p27Kip1, p21Cip1, p53, phospho-p53 Ser392, phospho-p53 Ser33, phospho-p53 S6, phospho-p53 Ser46, CHK1, CHK2, phospho-ATM Ser1981, phospho-ATR Ser428, and ATF4 (Figure 6A, 6B) were significantly induced by CAPE treatment.

Bottom Line: CAPE treatment decreased Skp2 and Akt1 protein expression in LNCaP 104-R1 tumors as compared to control group.Overexpression of Skp2, or siRNA knockdown of p21Cip1, p27Kip1, or p53 blocked suppressive effect of CAPE treatment.Co-treatment of CAPE with PI3K inhibitor LY294002 or Bcl-2 inhibitor ABT737 showed synergistic suppressive effects.

View Article: PubMed Central - PubMed

Affiliation: National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan, ROC.

ABSTRACT
Prostate cancer (PCa) patients receiving the androgen ablation therapy ultimately develop recurrent castration-resistant prostate cancer (CRPC) within 1-3 years. Treatment with caffeic acid phenethyl ester (CAPE) suppressed cell survival and proliferation via induction of G1 or G2/M cell cycle arrest in LNCaP 104-R1, DU-145, 22Rv1, and C4-2 CRPC cells. CAPE treatment also inhibited soft agar colony formation and retarded nude mice xenograft growth of LNCaP 104-R1 cells. We identified that CAPE treatment significantly reduced protein abundance of Skp2, Cdk2, Cdk4, Cdk7, Rb, phospho-Rb S807/811, cyclin A, cyclin D1, cyclin H, E2F1, c-Myc, SGK, phospho-p70S6kinase T421/S424, phospho-mTOR Ser2481, phospho-GSK3α Ser21, but induced p21Cip1, p27Kip1, ATF4, cyclin E, p53, TRIB3, phospho-p53 (Ser6, Ser33, Ser46, Ser392), phospho-p38 MAPK Thr180/Tyr182, Chk1, Chk2, phospho-ATM S1981, phospho-ATR S428, and phospho-p90RSK Ser380. CAPE treatment decreased Skp2 and Akt1 protein expression in LNCaP 104-R1 tumors as compared to control group. Overexpression of Skp2, or siRNA knockdown of p21Cip1, p27Kip1, or p53 blocked suppressive effect of CAPE treatment. Co-treatment of CAPE with PI3K inhibitor LY294002 or Bcl-2 inhibitor ABT737 showed synergistic suppressive effects. Our finding suggested that CAPE treatment induced cell cycle arrest and growth inhibition in CRPC cells via regulation of Skp2, p53, p21Cip1, and p27Kip1.

Show MeSH
Related in: MedlinePlus