Limits...
Caffeic acid phenethyl ester induced cell cycle arrest and growth inhibition in androgen-independent prostate cancer cells via regulation of Skp2, p53, p21Cip1 and p27Kip1.

Lin HP, Lin CY, Huo C, Hsiao PH, Su LC, Jiang SS, Chan TM, Chang CH, Chen LT, Kung HJ, Wang HD, Chuu CP - Oncotarget (2015)

Bottom Line: CAPE treatment decreased Skp2 and Akt1 protein expression in LNCaP 104-R1 tumors as compared to control group.Overexpression of Skp2, or siRNA knockdown of p21Cip1, p27Kip1, or p53 blocked suppressive effect of CAPE treatment.Co-treatment of CAPE with PI3K inhibitor LY294002 or Bcl-2 inhibitor ABT737 showed synergistic suppressive effects.

View Article: PubMed Central - PubMed

Affiliation: National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan, ROC.

ABSTRACT
Prostate cancer (PCa) patients receiving the androgen ablation therapy ultimately develop recurrent castration-resistant prostate cancer (CRPC) within 1-3 years. Treatment with caffeic acid phenethyl ester (CAPE) suppressed cell survival and proliferation via induction of G1 or G2/M cell cycle arrest in LNCaP 104-R1, DU-145, 22Rv1, and C4-2 CRPC cells. CAPE treatment also inhibited soft agar colony formation and retarded nude mice xenograft growth of LNCaP 104-R1 cells. We identified that CAPE treatment significantly reduced protein abundance of Skp2, Cdk2, Cdk4, Cdk7, Rb, phospho-Rb S807/811, cyclin A, cyclin D1, cyclin H, E2F1, c-Myc, SGK, phospho-p70S6kinase T421/S424, phospho-mTOR Ser2481, phospho-GSK3α Ser21, but induced p21Cip1, p27Kip1, ATF4, cyclin E, p53, TRIB3, phospho-p53 (Ser6, Ser33, Ser46, Ser392), phospho-p38 MAPK Thr180/Tyr182, Chk1, Chk2, phospho-ATM S1981, phospho-ATR S428, and phospho-p90RSK Ser380. CAPE treatment decreased Skp2 and Akt1 protein expression in LNCaP 104-R1 tumors as compared to control group. Overexpression of Skp2, or siRNA knockdown of p21Cip1, p27Kip1, or p53 blocked suppressive effect of CAPE treatment. Co-treatment of CAPE with PI3K inhibitor LY294002 or Bcl-2 inhibitor ABT737 showed synergistic suppressive effects. Our finding suggested that CAPE treatment induced cell cycle arrest and growth inhibition in CRPC cells via regulation of Skp2, p53, p21Cip1, and p27Kip1.

Show MeSH

Related in: MedlinePlus

CAPE suppressed tumor growth of LNCaP 104-R1 xenografts(A) LNCaP 104-R1 cells were injected subcutaneously into athymic mice to form tumors. After 14 weeks, the average tumor volume exceeded 150 mm3. The mice were then separated into control group and CAPE treatment group. Control group contained 6 mice and 8 tumors, while CAPE treatment group contained 6 mice and 9 tumors. CAPE (10 mg/kg/day in sesame oil) or vehicle (sesame oil) was administered by gavage starting from 14th week after cancer cell injection and was shown as 1st week for gavage in figure. Tumor volume and body weight of mice carrying 104-R1 xenografts were measured weekly. Tumor volume was shown as volume plus standard error (SE). Mice body weight in two groups did not show significant difference. (B) Protein expression of Skp2, p53, Akt1, p27Kip1, cyclin D1, and Rb in LNCaP 104-R1 tumors from control group or CAPE treatment group was assayed with Western blotting assay. α-tubulin was used as loading control. (C) The average expression level of Skp2, p53, Akt1, p27Kip1, cyclin D1, and Rb proteins in CAPE-treated LNCaP 104-R1 tumors was compared to those in tumors from control group. Asterisk* represents statistically significant difference p < 0.05 between the two groups.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4466643&req=5

Figure 4: CAPE suppressed tumor growth of LNCaP 104-R1 xenografts(A) LNCaP 104-R1 cells were injected subcutaneously into athymic mice to form tumors. After 14 weeks, the average tumor volume exceeded 150 mm3. The mice were then separated into control group and CAPE treatment group. Control group contained 6 mice and 8 tumors, while CAPE treatment group contained 6 mice and 9 tumors. CAPE (10 mg/kg/day in sesame oil) or vehicle (sesame oil) was administered by gavage starting from 14th week after cancer cell injection and was shown as 1st week for gavage in figure. Tumor volume and body weight of mice carrying 104-R1 xenografts were measured weekly. Tumor volume was shown as volume plus standard error (SE). Mice body weight in two groups did not show significant difference. (B) Protein expression of Skp2, p53, Akt1, p27Kip1, cyclin D1, and Rb in LNCaP 104-R1 tumors from control group or CAPE treatment group was assayed with Western blotting assay. α-tubulin was used as loading control. (C) The average expression level of Skp2, p53, Akt1, p27Kip1, cyclin D1, and Rb proteins in CAPE-treated LNCaP 104-R1 tumors was compared to those in tumors from control group. Asterisk* represents statistically significant difference p < 0.05 between the two groups.

Mentions: Administration of CAPE by gavage (10 mg/kg body weight per day) for eight weeks resulted in 50% reduction of tumor volume (Figure 4A), suggesting that CAPE treatment retarded the growth of LNCaP 104-R1 xenografts. CAPE treatment did not affect the body weight of the mice (data not shown), which means that the dosage used was not overtly toxic. CAPE gavage slowed down the tumor growth of LNCaP 104-R1 cells, which was consistent with our observation that CAPE treatment induced cell cycle arrest but not apoptosis. Western blotting assay indicated that CAPE treatment reduced protein expression of Skp2 and Akt1 in 104-R1 xenografts as compared to the control group (Figure 4B, 4C). Although there was a trend that CAPE increased p53 and p27Kip1 but decreased cyclin D1 in tumors, the difference in protein abundance between control and treatment group was not statistically significant (Figure 4C).


Caffeic acid phenethyl ester induced cell cycle arrest and growth inhibition in androgen-independent prostate cancer cells via regulation of Skp2, p53, p21Cip1 and p27Kip1.

Lin HP, Lin CY, Huo C, Hsiao PH, Su LC, Jiang SS, Chan TM, Chang CH, Chen LT, Kung HJ, Wang HD, Chuu CP - Oncotarget (2015)

CAPE suppressed tumor growth of LNCaP 104-R1 xenografts(A) LNCaP 104-R1 cells were injected subcutaneously into athymic mice to form tumors. After 14 weeks, the average tumor volume exceeded 150 mm3. The mice were then separated into control group and CAPE treatment group. Control group contained 6 mice and 8 tumors, while CAPE treatment group contained 6 mice and 9 tumors. CAPE (10 mg/kg/day in sesame oil) or vehicle (sesame oil) was administered by gavage starting from 14th week after cancer cell injection and was shown as 1st week for gavage in figure. Tumor volume and body weight of mice carrying 104-R1 xenografts were measured weekly. Tumor volume was shown as volume plus standard error (SE). Mice body weight in two groups did not show significant difference. (B) Protein expression of Skp2, p53, Akt1, p27Kip1, cyclin D1, and Rb in LNCaP 104-R1 tumors from control group or CAPE treatment group was assayed with Western blotting assay. α-tubulin was used as loading control. (C) The average expression level of Skp2, p53, Akt1, p27Kip1, cyclin D1, and Rb proteins in CAPE-treated LNCaP 104-R1 tumors was compared to those in tumors from control group. Asterisk* represents statistically significant difference p < 0.05 between the two groups.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4466643&req=5

Figure 4: CAPE suppressed tumor growth of LNCaP 104-R1 xenografts(A) LNCaP 104-R1 cells were injected subcutaneously into athymic mice to form tumors. After 14 weeks, the average tumor volume exceeded 150 mm3. The mice were then separated into control group and CAPE treatment group. Control group contained 6 mice and 8 tumors, while CAPE treatment group contained 6 mice and 9 tumors. CAPE (10 mg/kg/day in sesame oil) or vehicle (sesame oil) was administered by gavage starting from 14th week after cancer cell injection and was shown as 1st week for gavage in figure. Tumor volume and body weight of mice carrying 104-R1 xenografts were measured weekly. Tumor volume was shown as volume plus standard error (SE). Mice body weight in two groups did not show significant difference. (B) Protein expression of Skp2, p53, Akt1, p27Kip1, cyclin D1, and Rb in LNCaP 104-R1 tumors from control group or CAPE treatment group was assayed with Western blotting assay. α-tubulin was used as loading control. (C) The average expression level of Skp2, p53, Akt1, p27Kip1, cyclin D1, and Rb proteins in CAPE-treated LNCaP 104-R1 tumors was compared to those in tumors from control group. Asterisk* represents statistically significant difference p < 0.05 between the two groups.
Mentions: Administration of CAPE by gavage (10 mg/kg body weight per day) for eight weeks resulted in 50% reduction of tumor volume (Figure 4A), suggesting that CAPE treatment retarded the growth of LNCaP 104-R1 xenografts. CAPE treatment did not affect the body weight of the mice (data not shown), which means that the dosage used was not overtly toxic. CAPE gavage slowed down the tumor growth of LNCaP 104-R1 cells, which was consistent with our observation that CAPE treatment induced cell cycle arrest but not apoptosis. Western blotting assay indicated that CAPE treatment reduced protein expression of Skp2 and Akt1 in 104-R1 xenografts as compared to the control group (Figure 4B, 4C). Although there was a trend that CAPE increased p53 and p27Kip1 but decreased cyclin D1 in tumors, the difference in protein abundance between control and treatment group was not statistically significant (Figure 4C).

Bottom Line: CAPE treatment decreased Skp2 and Akt1 protein expression in LNCaP 104-R1 tumors as compared to control group.Overexpression of Skp2, or siRNA knockdown of p21Cip1, p27Kip1, or p53 blocked suppressive effect of CAPE treatment.Co-treatment of CAPE with PI3K inhibitor LY294002 or Bcl-2 inhibitor ABT737 showed synergistic suppressive effects.

View Article: PubMed Central - PubMed

Affiliation: National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan, ROC.

ABSTRACT
Prostate cancer (PCa) patients receiving the androgen ablation therapy ultimately develop recurrent castration-resistant prostate cancer (CRPC) within 1-3 years. Treatment with caffeic acid phenethyl ester (CAPE) suppressed cell survival and proliferation via induction of G1 or G2/M cell cycle arrest in LNCaP 104-R1, DU-145, 22Rv1, and C4-2 CRPC cells. CAPE treatment also inhibited soft agar colony formation and retarded nude mice xenograft growth of LNCaP 104-R1 cells. We identified that CAPE treatment significantly reduced protein abundance of Skp2, Cdk2, Cdk4, Cdk7, Rb, phospho-Rb S807/811, cyclin A, cyclin D1, cyclin H, E2F1, c-Myc, SGK, phospho-p70S6kinase T421/S424, phospho-mTOR Ser2481, phospho-GSK3α Ser21, but induced p21Cip1, p27Kip1, ATF4, cyclin E, p53, TRIB3, phospho-p53 (Ser6, Ser33, Ser46, Ser392), phospho-p38 MAPK Thr180/Tyr182, Chk1, Chk2, phospho-ATM S1981, phospho-ATR S428, and phospho-p90RSK Ser380. CAPE treatment decreased Skp2 and Akt1 protein expression in LNCaP 104-R1 tumors as compared to control group. Overexpression of Skp2, or siRNA knockdown of p21Cip1, p27Kip1, or p53 blocked suppressive effect of CAPE treatment. Co-treatment of CAPE with PI3K inhibitor LY294002 or Bcl-2 inhibitor ABT737 showed synergistic suppressive effects. Our finding suggested that CAPE treatment induced cell cycle arrest and growth inhibition in CRPC cells via regulation of Skp2, p53, p21Cip1, and p27Kip1.

Show MeSH
Related in: MedlinePlus