Limits...
The Influence of Emotion on Keyboard Typing: An Experimental Study Using Auditory Stimuli.

Lee PM, Tsui WH, Hsiao TC - PLoS ONE (2015)

Bottom Line: The results of the experiment indicate that the effect of arousal is significant in keystroke duration (p < .05), keystroke latency (p < .01), but not in the accuracy rate of keyboard typing.The size of the emotional effect is small, compared to the individual variability.Our findings support the conclusion that the keystroke duration and latency are influenced by arousal.

View Article: PubMed Central - PubMed

Affiliation: Institute of Computer Science and Engineering, National Chiao Tung University, Hsinchu, Taiwan, R.O.C.

ABSTRACT
In recent years, a novel approach for emotion recognition has been reported, which is by keystroke dynamics. The advantages of using this approach are that the data used is rather non-intrusive and easy to obtain. However, there were only limited investigations about the phenomenon itself in previous studies. Hence, this study aimed to examine the source of variance in keyboard typing patterns caused by emotions. A controlled experiment to collect subjects' keystroke data in different emotional states induced by International Affective Digitized Sounds (IADS) was conducted. Two-way Valence (3) x Arousal (3) ANOVAs was used to examine the collected dataset. The results of the experiment indicate that the effect of arousal is significant in keystroke duration (p < .05), keystroke latency (p < .01), but not in the accuracy rate of keyboard typing. The size of the emotional effect is small, compared to the individual variability. Our findings support the conclusion that the keystroke duration and latency are influenced by arousal. The finding about the size of the effect suggests that the accuracy rate of emotion recognition technology could be further improved if personalized models are utilized. Notably, the experiment was conducted using standard instruments and hence is expected to be highly reproducible.

No MeSH data available.


Related in: MedlinePlus

Keystroke latency with respect to arousal.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4465979&req=5

pone.0129056.g004: Keystroke latency with respect to arousal.

Mentions: The results of the current study may be critical while they were obtained from the analysis that with eleven subjects excluded, despite the fact that these subjects contain 47.48% (i.e. (6 + 6 + 6 + 5 + 4 + 4 + 4 + 3 + 3 + 3 + 3) ∕ (11 * 9)) missing values in their data, and to include these subjects in an analysis by imputing numerous missing values should lead to unreliable results in regard to the research objectives (i.e. to examine the keystroke dynamics in the 3 x 3 emotional conditions) of the current study. The reason of the result for being critical is that the exclusion of eleven subjects may increase the likelihood of detecting the desired effects. Hence, although for auditory stimuli we found that the main effect of arousal exceeds significant level for both keystroke duration and latency, the readers should generate their own view of the significance of these results. It is worth to note that while arousal was significant in both analyses that with and without those 11 subjects, the arousal was not significant for keystroke latency when the 11 subjects were included in the analysis. Figs 3 and 4 shows the plotting of the arousal data against keystroke duration and latency, respectively, with the data points of the excluded 11 subjects marked. The plotting in Fig 3 indicates that the pattern shown by the 11 subjects excluded from the analysis is similar to the pattern shown by the remainder of the subjects. On the other hand, the plotting in Fig 4 indicates that the pattern of the 11 subjects excluded from the analysis is opposite to the remainder of subjects. The finding suggests that the 11 subjects excluded from the analysis may have acted in patterns with respect to arousal different from the remainder subjects, and this should be the cause of the main effect Arousal for not being significant for keystroke latency. The different patterns could be caused by individual difference. Another possible explanation to the different patterns is that the subjects whose emotion was hard to be elicited, may have physiological patterns with respect to their emotional state different from the physiological patterns of normal subjects [58].


The Influence of Emotion on Keyboard Typing: An Experimental Study Using Auditory Stimuli.

Lee PM, Tsui WH, Hsiao TC - PLoS ONE (2015)

Keystroke latency with respect to arousal.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4465979&req=5

pone.0129056.g004: Keystroke latency with respect to arousal.
Mentions: The results of the current study may be critical while they were obtained from the analysis that with eleven subjects excluded, despite the fact that these subjects contain 47.48% (i.e. (6 + 6 + 6 + 5 + 4 + 4 + 4 + 3 + 3 + 3 + 3) ∕ (11 * 9)) missing values in their data, and to include these subjects in an analysis by imputing numerous missing values should lead to unreliable results in regard to the research objectives (i.e. to examine the keystroke dynamics in the 3 x 3 emotional conditions) of the current study. The reason of the result for being critical is that the exclusion of eleven subjects may increase the likelihood of detecting the desired effects. Hence, although for auditory stimuli we found that the main effect of arousal exceeds significant level for both keystroke duration and latency, the readers should generate their own view of the significance of these results. It is worth to note that while arousal was significant in both analyses that with and without those 11 subjects, the arousal was not significant for keystroke latency when the 11 subjects were included in the analysis. Figs 3 and 4 shows the plotting of the arousal data against keystroke duration and latency, respectively, with the data points of the excluded 11 subjects marked. The plotting in Fig 3 indicates that the pattern shown by the 11 subjects excluded from the analysis is similar to the pattern shown by the remainder of the subjects. On the other hand, the plotting in Fig 4 indicates that the pattern of the 11 subjects excluded from the analysis is opposite to the remainder of subjects. The finding suggests that the 11 subjects excluded from the analysis may have acted in patterns with respect to arousal different from the remainder subjects, and this should be the cause of the main effect Arousal for not being significant for keystroke latency. The different patterns could be caused by individual difference. Another possible explanation to the different patterns is that the subjects whose emotion was hard to be elicited, may have physiological patterns with respect to their emotional state different from the physiological patterns of normal subjects [58].

Bottom Line: The results of the experiment indicate that the effect of arousal is significant in keystroke duration (p < .05), keystroke latency (p < .01), but not in the accuracy rate of keyboard typing.The size of the emotional effect is small, compared to the individual variability.Our findings support the conclusion that the keystroke duration and latency are influenced by arousal.

View Article: PubMed Central - PubMed

Affiliation: Institute of Computer Science and Engineering, National Chiao Tung University, Hsinchu, Taiwan, R.O.C.

ABSTRACT
In recent years, a novel approach for emotion recognition has been reported, which is by keystroke dynamics. The advantages of using this approach are that the data used is rather non-intrusive and easy to obtain. However, there were only limited investigations about the phenomenon itself in previous studies. Hence, this study aimed to examine the source of variance in keyboard typing patterns caused by emotions. A controlled experiment to collect subjects' keystroke data in different emotional states induced by International Affective Digitized Sounds (IADS) was conducted. Two-way Valence (3) x Arousal (3) ANOVAs was used to examine the collected dataset. The results of the experiment indicate that the effect of arousal is significant in keystroke duration (p < .05), keystroke latency (p < .01), but not in the accuracy rate of keyboard typing. The size of the emotional effect is small, compared to the individual variability. Our findings support the conclusion that the keystroke duration and latency are influenced by arousal. The finding about the size of the effect suggests that the accuracy rate of emotion recognition technology could be further improved if personalized models are utilized. Notably, the experiment was conducted using standard instruments and hence is expected to be highly reproducible.

No MeSH data available.


Related in: MedlinePlus