Limits...
Brown Pine Leaf Extract and Its Active Component Trans-Communic Acid Inhibit UVB-Induced MMP-1 Expression by Targeting PI3K.

Huh WB, Kim JE, Kang YG, Park G, Lim TG, Kwon JY, Song da S, Jeong EH, Lee CC, Son JE, Seo SG, Lee E, Kim JR, Lee CY, Park JS, Lee KW - PLoS ONE (2015)

Bottom Line: BPLE and TCA elicited reductions in UVB-induced MMP-1 mRNA expression and activator protein-1 (AP-1) transactivation by reducing DNA binding activity of phospho-c-Jun, c-fos and Fra-1.We additionally found that BPLE and TCA inhibited phosphoinositide 3-kinase (PI3K), the upstream kinase of Akt, in vitro.In summary, both BPLE and its active component TCA exhibit protective effects against UVB-induced skin aging.

View Article: PubMed Central - PubMed

Affiliation: WCU Biomodulation Major, Center for Food and Bioconvergence, Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea; Advanced Institutes of Convergence Technology, Seoul National University, Suwon, Republic of Korea.

ABSTRACT
Japanese red pine (Pinus densiflora) is widely present in China, Japan, and Korea. Its green pine leaves have traditionally been used as a food as well as a coloring agent. After being shed, pine leaves change their color from green to brown within two years, and although the brown pine leaves are abundantly available, their value has not been closely assessed. In this study, we investigated the potential anti-photoaging properties of brown pine leaves for skin. Brown pine leaf extract (BPLE) inhibited UVB-induced matrix metalloproteinase-1 (MMP-1) expression to a greater extent than pine leaf extract (PLE) in human keratinocytes and a human skin equivalent model. HPLC analysis revealed that the quantity of trans-communic acid (TCA) and dehydroabietic acid (DAA) significantly increases when the pine leaf color changes from green to brown. BPLE and TCA elicited reductions in UVB-induced MMP-1 mRNA expression and activator protein-1 (AP-1) transactivation by reducing DNA binding activity of phospho-c-Jun, c-fos and Fra-1. BPLE and TCA also inhibited UVB-induced Akt phosphorylation, but not mitogen activated protein kinase (MAPK), known regulators of AP-1 transactivation. We additionally found that BPLE and TCA inhibited phosphoinositide 3-kinase (PI3K), the upstream kinase of Akt, in vitro. In summary, both BPLE and its active component TCA exhibit protective effects against UVB-induced skin aging. Taken together, these findings underline the potential for BPLE and TCA to be utilized as anti-wrinkling agents and cosmetic ingredients, as they suppress UVB-induced MMP-1 expression.

No MeSH data available.


BPLE and TCA inhibit UVB-induced MMP-1 mRNA expression and AP-1 transactivation in HaCaT cells.A and B, Cells were treated with BPLE and TCA at the indicated concentrations for 1 h before being exposed to 0.01 J/cm2 of UVB and mRNA was collected 12 h later. MMP-1 mRNA expression was analyzed as qRT-PCR. C and D, BPLE and TCA attenuated UVB-induced AP-1 transactivation in HaCaT cells. Cells were treated with BPLE and TCA at the indicated concentration for 1 h before being exposed to 0.01 J/cm2 of UVB and cells were lysed 12 h later. AP-1 transactivation was measured using Luciferase assay. All data are presented as the mean ±S.D. determined from three independent experiments. Means with different letters (a-c) within a graph were significantly different from each other at p < 0.05.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4465834&req=5

pone.0128365.g002: BPLE and TCA inhibit UVB-induced MMP-1 mRNA expression and AP-1 transactivation in HaCaT cells.A and B, Cells were treated with BPLE and TCA at the indicated concentrations for 1 h before being exposed to 0.01 J/cm2 of UVB and mRNA was collected 12 h later. MMP-1 mRNA expression was analyzed as qRT-PCR. C and D, BPLE and TCA attenuated UVB-induced AP-1 transactivation in HaCaT cells. Cells were treated with BPLE and TCA at the indicated concentration for 1 h before being exposed to 0.01 J/cm2 of UVB and cells were lysed 12 h later. AP-1 transactivation was measured using Luciferase assay. All data are presented as the mean ±S.D. determined from three independent experiments. Means with different letters (a-c) within a graph were significantly different from each other at p < 0.05.

Mentions: We further examined the effect of BPLE and TCA on MMP-1 mRNA expression, and both BPLE and TCA reduced UVB-induced MMP-1 mRNA levels (Fig 2A and 2B). It has been reported that AP-1 is a major transcription factor of UVB-induced MMP-1 expression [3, 31–33]. To verify whether AP-1 mediates the effect of BPLE and TCA, AP-1 transactivation was examined using HaCaT cells stably transfected with AP-1 luciferase plasmid. The results showed that both BPLE and TCA attenuated UVB-induced AP-1 transactivation (Fig 2C and 2D) suggesting that AP-1mediates MMP-1 regulation by BPLE and TCA.


Brown Pine Leaf Extract and Its Active Component Trans-Communic Acid Inhibit UVB-Induced MMP-1 Expression by Targeting PI3K.

Huh WB, Kim JE, Kang YG, Park G, Lim TG, Kwon JY, Song da S, Jeong EH, Lee CC, Son JE, Seo SG, Lee E, Kim JR, Lee CY, Park JS, Lee KW - PLoS ONE (2015)

BPLE and TCA inhibit UVB-induced MMP-1 mRNA expression and AP-1 transactivation in HaCaT cells.A and B, Cells were treated with BPLE and TCA at the indicated concentrations for 1 h before being exposed to 0.01 J/cm2 of UVB and mRNA was collected 12 h later. MMP-1 mRNA expression was analyzed as qRT-PCR. C and D, BPLE and TCA attenuated UVB-induced AP-1 transactivation in HaCaT cells. Cells were treated with BPLE and TCA at the indicated concentration for 1 h before being exposed to 0.01 J/cm2 of UVB and cells were lysed 12 h later. AP-1 transactivation was measured using Luciferase assay. All data are presented as the mean ±S.D. determined from three independent experiments. Means with different letters (a-c) within a graph were significantly different from each other at p < 0.05.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4465834&req=5

pone.0128365.g002: BPLE and TCA inhibit UVB-induced MMP-1 mRNA expression and AP-1 transactivation in HaCaT cells.A and B, Cells were treated with BPLE and TCA at the indicated concentrations for 1 h before being exposed to 0.01 J/cm2 of UVB and mRNA was collected 12 h later. MMP-1 mRNA expression was analyzed as qRT-PCR. C and D, BPLE and TCA attenuated UVB-induced AP-1 transactivation in HaCaT cells. Cells were treated with BPLE and TCA at the indicated concentration for 1 h before being exposed to 0.01 J/cm2 of UVB and cells were lysed 12 h later. AP-1 transactivation was measured using Luciferase assay. All data are presented as the mean ±S.D. determined from three independent experiments. Means with different letters (a-c) within a graph were significantly different from each other at p < 0.05.
Mentions: We further examined the effect of BPLE and TCA on MMP-1 mRNA expression, and both BPLE and TCA reduced UVB-induced MMP-1 mRNA levels (Fig 2A and 2B). It has been reported that AP-1 is a major transcription factor of UVB-induced MMP-1 expression [3, 31–33]. To verify whether AP-1 mediates the effect of BPLE and TCA, AP-1 transactivation was examined using HaCaT cells stably transfected with AP-1 luciferase plasmid. The results showed that both BPLE and TCA attenuated UVB-induced AP-1 transactivation (Fig 2C and 2D) suggesting that AP-1mediates MMP-1 regulation by BPLE and TCA.

Bottom Line: BPLE and TCA elicited reductions in UVB-induced MMP-1 mRNA expression and activator protein-1 (AP-1) transactivation by reducing DNA binding activity of phospho-c-Jun, c-fos and Fra-1.We additionally found that BPLE and TCA inhibited phosphoinositide 3-kinase (PI3K), the upstream kinase of Akt, in vitro.In summary, both BPLE and its active component TCA exhibit protective effects against UVB-induced skin aging.

View Article: PubMed Central - PubMed

Affiliation: WCU Biomodulation Major, Center for Food and Bioconvergence, Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea; Advanced Institutes of Convergence Technology, Seoul National University, Suwon, Republic of Korea.

ABSTRACT
Japanese red pine (Pinus densiflora) is widely present in China, Japan, and Korea. Its green pine leaves have traditionally been used as a food as well as a coloring agent. After being shed, pine leaves change their color from green to brown within two years, and although the brown pine leaves are abundantly available, their value has not been closely assessed. In this study, we investigated the potential anti-photoaging properties of brown pine leaves for skin. Brown pine leaf extract (BPLE) inhibited UVB-induced matrix metalloproteinase-1 (MMP-1) expression to a greater extent than pine leaf extract (PLE) in human keratinocytes and a human skin equivalent model. HPLC analysis revealed that the quantity of trans-communic acid (TCA) and dehydroabietic acid (DAA) significantly increases when the pine leaf color changes from green to brown. BPLE and TCA elicited reductions in UVB-induced MMP-1 mRNA expression and activator protein-1 (AP-1) transactivation by reducing DNA binding activity of phospho-c-Jun, c-fos and Fra-1. BPLE and TCA also inhibited UVB-induced Akt phosphorylation, but not mitogen activated protein kinase (MAPK), known regulators of AP-1 transactivation. We additionally found that BPLE and TCA inhibited phosphoinositide 3-kinase (PI3K), the upstream kinase of Akt, in vitro. In summary, both BPLE and its active component TCA exhibit protective effects against UVB-induced skin aging. Taken together, these findings underline the potential for BPLE and TCA to be utilized as anti-wrinkling agents and cosmetic ingredients, as they suppress UVB-induced MMP-1 expression.

No MeSH data available.