Limits...
Brown Pine Leaf Extract and Its Active Component Trans-Communic Acid Inhibit UVB-Induced MMP-1 Expression by Targeting PI3K.

Huh WB, Kim JE, Kang YG, Park G, Lim TG, Kwon JY, Song da S, Jeong EH, Lee CC, Son JE, Seo SG, Lee E, Kim JR, Lee CY, Park JS, Lee KW - PLoS ONE (2015)

Bottom Line: BPLE and TCA elicited reductions in UVB-induced MMP-1 mRNA expression and activator protein-1 (AP-1) transactivation by reducing DNA binding activity of phospho-c-Jun, c-fos and Fra-1.We additionally found that BPLE and TCA inhibited phosphoinositide 3-kinase (PI3K), the upstream kinase of Akt, in vitro.In summary, both BPLE and its active component TCA exhibit protective effects against UVB-induced skin aging.

View Article: PubMed Central - PubMed

Affiliation: WCU Biomodulation Major, Center for Food and Bioconvergence, Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea; Advanced Institutes of Convergence Technology, Seoul National University, Suwon, Republic of Korea.

ABSTRACT
Japanese red pine (Pinus densiflora) is widely present in China, Japan, and Korea. Its green pine leaves have traditionally been used as a food as well as a coloring agent. After being shed, pine leaves change their color from green to brown within two years, and although the brown pine leaves are abundantly available, their value has not been closely assessed. In this study, we investigated the potential anti-photoaging properties of brown pine leaves for skin. Brown pine leaf extract (BPLE) inhibited UVB-induced matrix metalloproteinase-1 (MMP-1) expression to a greater extent than pine leaf extract (PLE) in human keratinocytes and a human skin equivalent model. HPLC analysis revealed that the quantity of trans-communic acid (TCA) and dehydroabietic acid (DAA) significantly increases when the pine leaf color changes from green to brown. BPLE and TCA elicited reductions in UVB-induced MMP-1 mRNA expression and activator protein-1 (AP-1) transactivation by reducing DNA binding activity of phospho-c-Jun, c-fos and Fra-1. BPLE and TCA also inhibited UVB-induced Akt phosphorylation, but not mitogen activated protein kinase (MAPK), known regulators of AP-1 transactivation. We additionally found that BPLE and TCA inhibited phosphoinositide 3-kinase (PI3K), the upstream kinase of Akt, in vitro. In summary, both BPLE and its active component TCA exhibit protective effects against UVB-induced skin aging. Taken together, these findings underline the potential for BPLE and TCA to be utilized as anti-wrinkling agents and cosmetic ingredients, as they suppress UVB-induced MMP-1 expression.

No MeSH data available.


Related in: MedlinePlus

TCA contributes to the inhibitory effect of BPLE on UVB-induced MMP-1 expression in HaCaT cells.A and C, Protein expression was analyzed by Western blotting (MMP-1), Zymography (MMP-2), and ELISA (MMP-1 contents). Cells were treated with BPLE/PLE (A) or TCA/DAA (C) at the indicated concentration for 1 h before being exposed to 0.01 J/cm2 of UVB, and media was harvested 48 h later. B and D, Cell viability of HaCaT cells in the presence or absence of BPLE, PLE (B) or TCA, DAA (D). Cell viability was measured using MTT assay. Each experiment was performed in triplicate. The data are presented as the mean ±S.D. of MMP-1 protein content and cell viability. Means with different letters (a-c) within a graph were significantly different from each other at p < 0.05.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4465834&req=5

pone.0128365.g001: TCA contributes to the inhibitory effect of BPLE on UVB-induced MMP-1 expression in HaCaT cells.A and C, Protein expression was analyzed by Western blotting (MMP-1), Zymography (MMP-2), and ELISA (MMP-1 contents). Cells were treated with BPLE/PLE (A) or TCA/DAA (C) at the indicated concentration for 1 h before being exposed to 0.01 J/cm2 of UVB, and media was harvested 48 h later. B and D, Cell viability of HaCaT cells in the presence or absence of BPLE, PLE (B) or TCA, DAA (D). Cell viability was measured using MTT assay. Each experiment was performed in triplicate. The data are presented as the mean ±S.D. of MMP-1 protein content and cell viability. Means with different letters (a-c) within a graph were significantly different from each other at p < 0.05.

Mentions: BPLE and PLE were tested for their inhibitory effect against UVB-induced MMP-1 expression in HaCaT cells within the range of concentration which did notexhibit cytotoxicity (Fig 1A and 1B). The results indicated that BPLE inhibits UVB-induced MMP-1 expression in a dose-dependent manner while not affecting MMP-2. This inhibitory effect of BPLE on MMP-2 was stronger than PLE, suggesting there is a compositional difference between BPLE and PLE which may result in their differential effects.


Brown Pine Leaf Extract and Its Active Component Trans-Communic Acid Inhibit UVB-Induced MMP-1 Expression by Targeting PI3K.

Huh WB, Kim JE, Kang YG, Park G, Lim TG, Kwon JY, Song da S, Jeong EH, Lee CC, Son JE, Seo SG, Lee E, Kim JR, Lee CY, Park JS, Lee KW - PLoS ONE (2015)

TCA contributes to the inhibitory effect of BPLE on UVB-induced MMP-1 expression in HaCaT cells.A and C, Protein expression was analyzed by Western blotting (MMP-1), Zymography (MMP-2), and ELISA (MMP-1 contents). Cells were treated with BPLE/PLE (A) or TCA/DAA (C) at the indicated concentration for 1 h before being exposed to 0.01 J/cm2 of UVB, and media was harvested 48 h later. B and D, Cell viability of HaCaT cells in the presence or absence of BPLE, PLE (B) or TCA, DAA (D). Cell viability was measured using MTT assay. Each experiment was performed in triplicate. The data are presented as the mean ±S.D. of MMP-1 protein content and cell viability. Means with different letters (a-c) within a graph were significantly different from each other at p < 0.05.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4465834&req=5

pone.0128365.g001: TCA contributes to the inhibitory effect of BPLE on UVB-induced MMP-1 expression in HaCaT cells.A and C, Protein expression was analyzed by Western blotting (MMP-1), Zymography (MMP-2), and ELISA (MMP-1 contents). Cells were treated with BPLE/PLE (A) or TCA/DAA (C) at the indicated concentration for 1 h before being exposed to 0.01 J/cm2 of UVB, and media was harvested 48 h later. B and D, Cell viability of HaCaT cells in the presence or absence of BPLE, PLE (B) or TCA, DAA (D). Cell viability was measured using MTT assay. Each experiment was performed in triplicate. The data are presented as the mean ±S.D. of MMP-1 protein content and cell viability. Means with different letters (a-c) within a graph were significantly different from each other at p < 0.05.
Mentions: BPLE and PLE were tested for their inhibitory effect against UVB-induced MMP-1 expression in HaCaT cells within the range of concentration which did notexhibit cytotoxicity (Fig 1A and 1B). The results indicated that BPLE inhibits UVB-induced MMP-1 expression in a dose-dependent manner while not affecting MMP-2. This inhibitory effect of BPLE on MMP-2 was stronger than PLE, suggesting there is a compositional difference between BPLE and PLE which may result in their differential effects.

Bottom Line: BPLE and TCA elicited reductions in UVB-induced MMP-1 mRNA expression and activator protein-1 (AP-1) transactivation by reducing DNA binding activity of phospho-c-Jun, c-fos and Fra-1.We additionally found that BPLE and TCA inhibited phosphoinositide 3-kinase (PI3K), the upstream kinase of Akt, in vitro.In summary, both BPLE and its active component TCA exhibit protective effects against UVB-induced skin aging.

View Article: PubMed Central - PubMed

Affiliation: WCU Biomodulation Major, Center for Food and Bioconvergence, Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea; Advanced Institutes of Convergence Technology, Seoul National University, Suwon, Republic of Korea.

ABSTRACT
Japanese red pine (Pinus densiflora) is widely present in China, Japan, and Korea. Its green pine leaves have traditionally been used as a food as well as a coloring agent. After being shed, pine leaves change their color from green to brown within two years, and although the brown pine leaves are abundantly available, their value has not been closely assessed. In this study, we investigated the potential anti-photoaging properties of brown pine leaves for skin. Brown pine leaf extract (BPLE) inhibited UVB-induced matrix metalloproteinase-1 (MMP-1) expression to a greater extent than pine leaf extract (PLE) in human keratinocytes and a human skin equivalent model. HPLC analysis revealed that the quantity of trans-communic acid (TCA) and dehydroabietic acid (DAA) significantly increases when the pine leaf color changes from green to brown. BPLE and TCA elicited reductions in UVB-induced MMP-1 mRNA expression and activator protein-1 (AP-1) transactivation by reducing DNA binding activity of phospho-c-Jun, c-fos and Fra-1. BPLE and TCA also inhibited UVB-induced Akt phosphorylation, but not mitogen activated protein kinase (MAPK), known regulators of AP-1 transactivation. We additionally found that BPLE and TCA inhibited phosphoinositide 3-kinase (PI3K), the upstream kinase of Akt, in vitro. In summary, both BPLE and its active component TCA exhibit protective effects against UVB-induced skin aging. Taken together, these findings underline the potential for BPLE and TCA to be utilized as anti-wrinkling agents and cosmetic ingredients, as they suppress UVB-induced MMP-1 expression.

No MeSH data available.


Related in: MedlinePlus