Limits...
Impact of Virgin Olive Oil and Phenol-Enriched Virgin Olive Oils on the HDL Proteome in Hypercholesterolemic Subjects: A Double Blind, Randomized, Controlled, Cross-Over Clinical Trial (VOHF Study).

Pedret A, Catalán Ú, Fernández-Castillejo S, Farràs M, Valls RM, Rubió L, Canela N, Aragonés G, Romeu M, Castañer O, de la Torre R, Covas MI, Fitó M, Motilva MJ, Solà R - PLoS ONE (2015)

Bottom Line: The effects of olive oil phenolic compounds (PCs) on HDL proteome, with respect to new aspects of cardioprotective properties, are still unknown.The three VOOs were well tolerated by all participants.The common observed protein expression modifications after the three VOOs indicate a major matrix effect.

View Article: PubMed Central - PubMed

Affiliation: Research Unit on Lipids and Atherosclerosis, CTNS, CIBERDEM, Hospital Universitari Sant Joan, Servei de Medicina Interna, IISPV, Universitat Rovira i Virgili, Reus, Spain.

ABSTRACT

Unlabelled: The effects of olive oil phenolic compounds (PCs) on HDL proteome, with respect to new aspects of cardioprotective properties, are still unknown. The aim of this study was to assess the impact on the HDL protein cargo of the intake of virgin olive oil (VOO) and two functional VOOs, enriched with their own PCs (FVOO) or complemented with thyme PCs (FVOOT), in hypercholesterolemic subjects. Eligible volunteers were recruited from the IMIM-Hospital del Mar Medical Research Institute (Spain) from April 2012 to September 2012. Thirty-three hypercholesterolemic participants (total cholesterol >200 mg/dL; 19 men and 14 women; aged 35 to 80 years) were randomized in the double-blind, controlled, cross-over VOHF clinical trial. The subjects received for 3 weeks 25 mL/day of: VOO, FVOO, or FVOOT. Using a quantitative proteomics approach, 127 HDL-associated proteins were identified. Among these, 15 were commonly differently expressed after the three VOO interventions compared to baseline, with specific changes observed for each intervention. The 15 common proteins were mainly involved in the following pathways: LXR/RXR activation, acute phase response, and atherosclerosis. The three VOOs were well tolerated by all participants. Consumption of VOO, or phenol-enriched VOOs, has an impact on the HDL proteome in a cardioprotective mode by up-regulating proteins related to cholesterol homeostasis, protection against oxidation and blood coagulation while down-regulating proteins implicated in acute-phase response, lipid transport, and immune response. The common observed protein expression modifications after the three VOOs indicate a major matrix effect.

Trial registration: International Standard Randomized Controlled Trials ISRCTN77500181.

No MeSH data available.


Related in: MedlinePlus

Expression levels of Apo A-I, Apo A-II, Clusterin and Haptoglobin.Expression levels of Apo A-I and A-II were measured by immunturbidimetry assays and clusterin and haptoglobin by ELISA assays in 10 HDL pools.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4465699&req=5

pone.0129160.g005: Expression levels of Apo A-I, Apo A-II, Clusterin and Haptoglobin.Expression levels of Apo A-I and A-II were measured by immunturbidimetry assays and clusterin and haptoglobin by ELISA assays in 10 HDL pools.

Mentions: A panel of four proteins identified by MS analysis with changes after the three interventions, two up-regulated (Apo AI and Apo AII) and two down-regulated (Clusterin and Haptoglobin), were selected to confirm the changes in the protein expression that were observed in the proteomic analysis. These four proteins were quantified in the same 10 HDL pools used for proteomic analysis. Apo A-I and Apo A-II increases observed by proteomics were confirmed by immunoturbidimetry. The fold-changes observed in Apo A-I and Apo A-II measured by immunodetection were approximately 1.2 after the three VOO interventions compared to the basal value (Fig 5). Moreover, the results obtained for clusterin and haptoglobin quantifications measured by ELISA were also consistent with the decreases observed by proteomics with fold-changes of the order of 0.9 (Fig 5). The fold-changes observed using immunodetection methods were in the same way than those observed in proteomics analysis, even though they did not reach the same fold-change values. We observed an increase tendency for Apo AI and Apo AII proteins and a decrease tendency for Clusterin and Haptoglobin, in agreement with the MS findings, although these tendencies did not achieve statistical significance probably due to the low sample size. Moreover, these results confirm that proteomics analyses are more sensitive to detect minimum changes in HDL proteome.


Impact of Virgin Olive Oil and Phenol-Enriched Virgin Olive Oils on the HDL Proteome in Hypercholesterolemic Subjects: A Double Blind, Randomized, Controlled, Cross-Over Clinical Trial (VOHF Study).

Pedret A, Catalán Ú, Fernández-Castillejo S, Farràs M, Valls RM, Rubió L, Canela N, Aragonés G, Romeu M, Castañer O, de la Torre R, Covas MI, Fitó M, Motilva MJ, Solà R - PLoS ONE (2015)

Expression levels of Apo A-I, Apo A-II, Clusterin and Haptoglobin.Expression levels of Apo A-I and A-II were measured by immunturbidimetry assays and clusterin and haptoglobin by ELISA assays in 10 HDL pools.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4465699&req=5

pone.0129160.g005: Expression levels of Apo A-I, Apo A-II, Clusterin and Haptoglobin.Expression levels of Apo A-I and A-II were measured by immunturbidimetry assays and clusterin and haptoglobin by ELISA assays in 10 HDL pools.
Mentions: A panel of four proteins identified by MS analysis with changes after the three interventions, two up-regulated (Apo AI and Apo AII) and two down-regulated (Clusterin and Haptoglobin), were selected to confirm the changes in the protein expression that were observed in the proteomic analysis. These four proteins were quantified in the same 10 HDL pools used for proteomic analysis. Apo A-I and Apo A-II increases observed by proteomics were confirmed by immunoturbidimetry. The fold-changes observed in Apo A-I and Apo A-II measured by immunodetection were approximately 1.2 after the three VOO interventions compared to the basal value (Fig 5). Moreover, the results obtained for clusterin and haptoglobin quantifications measured by ELISA were also consistent with the decreases observed by proteomics with fold-changes of the order of 0.9 (Fig 5). The fold-changes observed using immunodetection methods were in the same way than those observed in proteomics analysis, even though they did not reach the same fold-change values. We observed an increase tendency for Apo AI and Apo AII proteins and a decrease tendency for Clusterin and Haptoglobin, in agreement with the MS findings, although these tendencies did not achieve statistical significance probably due to the low sample size. Moreover, these results confirm that proteomics analyses are more sensitive to detect minimum changes in HDL proteome.

Bottom Line: The effects of olive oil phenolic compounds (PCs) on HDL proteome, with respect to new aspects of cardioprotective properties, are still unknown.The three VOOs were well tolerated by all participants.The common observed protein expression modifications after the three VOOs indicate a major matrix effect.

View Article: PubMed Central - PubMed

Affiliation: Research Unit on Lipids and Atherosclerosis, CTNS, CIBERDEM, Hospital Universitari Sant Joan, Servei de Medicina Interna, IISPV, Universitat Rovira i Virgili, Reus, Spain.

ABSTRACT

Unlabelled: The effects of olive oil phenolic compounds (PCs) on HDL proteome, with respect to new aspects of cardioprotective properties, are still unknown. The aim of this study was to assess the impact on the HDL protein cargo of the intake of virgin olive oil (VOO) and two functional VOOs, enriched with their own PCs (FVOO) or complemented with thyme PCs (FVOOT), in hypercholesterolemic subjects. Eligible volunteers were recruited from the IMIM-Hospital del Mar Medical Research Institute (Spain) from April 2012 to September 2012. Thirty-three hypercholesterolemic participants (total cholesterol >200 mg/dL; 19 men and 14 women; aged 35 to 80 years) were randomized in the double-blind, controlled, cross-over VOHF clinical trial. The subjects received for 3 weeks 25 mL/day of: VOO, FVOO, or FVOOT. Using a quantitative proteomics approach, 127 HDL-associated proteins were identified. Among these, 15 were commonly differently expressed after the three VOO interventions compared to baseline, with specific changes observed for each intervention. The 15 common proteins were mainly involved in the following pathways: LXR/RXR activation, acute phase response, and atherosclerosis. The three VOOs were well tolerated by all participants. Consumption of VOO, or phenol-enriched VOOs, has an impact on the HDL proteome in a cardioprotective mode by up-regulating proteins related to cholesterol homeostasis, protection against oxidation and blood coagulation while down-regulating proteins implicated in acute-phase response, lipid transport, and immune response. The common observed protein expression modifications after the three VOOs indicate a major matrix effect.

Trial registration: International Standard Randomized Controlled Trials ISRCTN77500181.

No MeSH data available.


Related in: MedlinePlus