Limits...
Suitable Days for Plant Growth Disappear under Projected Climate Change: Potential Human and Biotic Vulnerability.

Mora C, Caldwell IR, Caldwell JM, Fisher MR, Genco BM, Running SW - PLoS Biol. (2015)

Bottom Line: While there have been considerable advances in understanding the physical aspects of climate change, comprehensive analyses integrating climate, biological, and social sciences are less common.Notably, tropical areas could lose up to 200 suitable plant growing days per year.Changes in suitable plant growing days are projected to be less severe under strong and moderate mitigation scenarios (i.e., RCP 2.6 and RCP 4.5), underscoring the importance of reducing emissions to avoid such disproportionate impacts on ecosystems and people.

View Article: PubMed Central - PubMed

Affiliation: Department of Geography, University of Hawai'i at Manoa, Honolulu, Hawai'i, United States of America.

ABSTRACT
Ongoing climate change can alter conditions for plant growth, in turn affecting ecological and social systems. While there have been considerable advances in understanding the physical aspects of climate change, comprehensive analyses integrating climate, biological, and social sciences are less common. Here we use climate projections under alternative mitigation scenarios to show how changes in environmental variables that limit plant growth could impact ecosystems and people. We show that although the global mean number of days above freezing will increase by up to 7% by 2100 under "business as usual" (representative concentration pathway [RCP] 8.5), suitable growing days will actually decrease globally by up to 11% when other climatic variables that limit plant growth are considered (i.e., temperature, water availability, and solar radiation). Areas in Russia, China, and Canada are projected to gain suitable plant growing days, but the rest of the world will experience losses. Notably, tropical areas could lose up to 200 suitable plant growing days per year. These changes will impact most of the world's terrestrial ecosystems, potentially triggering climate feedbacks. Human populations will also be affected, with up to ~2,100 million of the poorest people in the world (~30% of the world's population) highly vulnerable to changes in the supply of plant-related goods and services. These impacts will be spatially variable, indicating regions where adaptations will be necessary. Changes in suitable plant growing days are projected to be less severe under strong and moderate mitigation scenarios (i.e., RCP 2.6 and RCP 4.5), underscoring the importance of reducing emissions to avoid such disproportionate impacts on ecosystems and people.

No MeSH data available.


Climatic ranges for plant growth.Global vegetative matter produced (i.e., MODIS NPP, http://neo.sci.gsfc.nasa.gov/view.php?datasetId=MOD17A2_E_PSN) along gradients of temperature (A), soil moisture (B), solar radiation (C), and the interactions of these three variables (D–G). Climate data were obtained from National Centers for Environmental Prediction (NCEP) Reanalysis Daily Averages (http://www.esrl.noaa.gov/psd/cgi-bin/db_search/DBSearch.pl?Dataset=NCEP+Reanalysis+Daily+Averages+Surface+Flux&group=0&submit=Search). Grey lines in plots A–F indicate the climatic conditions that surround 95% of the global NPP each year between 2004 and 2013. Red lines encompass all of the yearly boundaries and define the climatic thresholds used in our analysis. A suitable plant growing day was defined as any day falling within these climatic thresholds. Points in plot G are a random subset (i.e., 1,000 points) of global climate conditions and resulting NPP (grey points indicate positive NPP/growth, and red points indicate negative NPP/respiration). As illustrated, climatic conditions occurring beyond the estimated global thresholds have commonly resulted in plant respiration. See also S1 Fig. Data are provided in S1 Data.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4465630&req=5

pbio.1002167.g001: Climatic ranges for plant growth.Global vegetative matter produced (i.e., MODIS NPP, http://neo.sci.gsfc.nasa.gov/view.php?datasetId=MOD17A2_E_PSN) along gradients of temperature (A), soil moisture (B), solar radiation (C), and the interactions of these three variables (D–G). Climate data were obtained from National Centers for Environmental Prediction (NCEP) Reanalysis Daily Averages (http://www.esrl.noaa.gov/psd/cgi-bin/db_search/DBSearch.pl?Dataset=NCEP+Reanalysis+Daily+Averages+Surface+Flux&group=0&submit=Search). Grey lines in plots A–F indicate the climatic conditions that surround 95% of the global NPP each year between 2004 and 2013. Red lines encompass all of the yearly boundaries and define the climatic thresholds used in our analysis. A suitable plant growing day was defined as any day falling within these climatic thresholds. Points in plot G are a random subset (i.e., 1,000 points) of global climate conditions and resulting NPP (grey points indicate positive NPP/growth, and red points indicate negative NPP/respiration). As illustrated, climatic conditions occurring beyond the estimated global thresholds have commonly resulted in plant respiration. See also S1 Fig. Data are provided in S1 Data.

Mentions: To assess the future limiting roles of temperature, water availability, and solar radiation on plant growth, we calculated changes in the number of days in a given year that are within suitable climate conditions for plant growth (i.e., suitable plant growing days) under different climate projections (see Methods; data used are described in S1–S2 Tables). We first estimated climatic thresholds (i.e., for temperature, soil moisture, solar radiation, and the interactions of these three factors) within which 95% of the terrestrial vegetative matter in the world is produced (Moderate Resolution Imaging Spectroradiometer [MODIS] Net Primary Production [NPP] from 2004–2013; S2 Table; see Methods; Fig 1). We then used daily climate projections (from the Coupled Model Intercomparison Project Phase 5 [CMIP5]) under strong (i.e., representative concentration pathway [RCP] 2.6), moderate (i.e., RCP 4.5), and business-as-usual (i.e., RCP 8.5) mitigation scenarios to quantify the number of days in a given year that fall within climate thresholds for plant growth. We analyzed each climate variable independently as well as their interactions. We describe results based on multimodel averages because they are more accurate at predicting observed suitable growing days than most models alone (results for precision and accuracy are shown in S2–S3 Figs).


Suitable Days for Plant Growth Disappear under Projected Climate Change: Potential Human and Biotic Vulnerability.

Mora C, Caldwell IR, Caldwell JM, Fisher MR, Genco BM, Running SW - PLoS Biol. (2015)

Climatic ranges for plant growth.Global vegetative matter produced (i.e., MODIS NPP, http://neo.sci.gsfc.nasa.gov/view.php?datasetId=MOD17A2_E_PSN) along gradients of temperature (A), soil moisture (B), solar radiation (C), and the interactions of these three variables (D–G). Climate data were obtained from National Centers for Environmental Prediction (NCEP) Reanalysis Daily Averages (http://www.esrl.noaa.gov/psd/cgi-bin/db_search/DBSearch.pl?Dataset=NCEP+Reanalysis+Daily+Averages+Surface+Flux&group=0&submit=Search). Grey lines in plots A–F indicate the climatic conditions that surround 95% of the global NPP each year between 2004 and 2013. Red lines encompass all of the yearly boundaries and define the climatic thresholds used in our analysis. A suitable plant growing day was defined as any day falling within these climatic thresholds. Points in plot G are a random subset (i.e., 1,000 points) of global climate conditions and resulting NPP (grey points indicate positive NPP/growth, and red points indicate negative NPP/respiration). As illustrated, climatic conditions occurring beyond the estimated global thresholds have commonly resulted in plant respiration. See also S1 Fig. Data are provided in S1 Data.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4465630&req=5

pbio.1002167.g001: Climatic ranges for plant growth.Global vegetative matter produced (i.e., MODIS NPP, http://neo.sci.gsfc.nasa.gov/view.php?datasetId=MOD17A2_E_PSN) along gradients of temperature (A), soil moisture (B), solar radiation (C), and the interactions of these three variables (D–G). Climate data were obtained from National Centers for Environmental Prediction (NCEP) Reanalysis Daily Averages (http://www.esrl.noaa.gov/psd/cgi-bin/db_search/DBSearch.pl?Dataset=NCEP+Reanalysis+Daily+Averages+Surface+Flux&group=0&submit=Search). Grey lines in plots A–F indicate the climatic conditions that surround 95% of the global NPP each year between 2004 and 2013. Red lines encompass all of the yearly boundaries and define the climatic thresholds used in our analysis. A suitable plant growing day was defined as any day falling within these climatic thresholds. Points in plot G are a random subset (i.e., 1,000 points) of global climate conditions and resulting NPP (grey points indicate positive NPP/growth, and red points indicate negative NPP/respiration). As illustrated, climatic conditions occurring beyond the estimated global thresholds have commonly resulted in plant respiration. See also S1 Fig. Data are provided in S1 Data.
Mentions: To assess the future limiting roles of temperature, water availability, and solar radiation on plant growth, we calculated changes in the number of days in a given year that are within suitable climate conditions for plant growth (i.e., suitable plant growing days) under different climate projections (see Methods; data used are described in S1–S2 Tables). We first estimated climatic thresholds (i.e., for temperature, soil moisture, solar radiation, and the interactions of these three factors) within which 95% of the terrestrial vegetative matter in the world is produced (Moderate Resolution Imaging Spectroradiometer [MODIS] Net Primary Production [NPP] from 2004–2013; S2 Table; see Methods; Fig 1). We then used daily climate projections (from the Coupled Model Intercomparison Project Phase 5 [CMIP5]) under strong (i.e., representative concentration pathway [RCP] 2.6), moderate (i.e., RCP 4.5), and business-as-usual (i.e., RCP 8.5) mitigation scenarios to quantify the number of days in a given year that fall within climate thresholds for plant growth. We analyzed each climate variable independently as well as their interactions. We describe results based on multimodel averages because they are more accurate at predicting observed suitable growing days than most models alone (results for precision and accuracy are shown in S2–S3 Figs).

Bottom Line: While there have been considerable advances in understanding the physical aspects of climate change, comprehensive analyses integrating climate, biological, and social sciences are less common.Notably, tropical areas could lose up to 200 suitable plant growing days per year.Changes in suitable plant growing days are projected to be less severe under strong and moderate mitigation scenarios (i.e., RCP 2.6 and RCP 4.5), underscoring the importance of reducing emissions to avoid such disproportionate impacts on ecosystems and people.

View Article: PubMed Central - PubMed

Affiliation: Department of Geography, University of Hawai'i at Manoa, Honolulu, Hawai'i, United States of America.

ABSTRACT
Ongoing climate change can alter conditions for plant growth, in turn affecting ecological and social systems. While there have been considerable advances in understanding the physical aspects of climate change, comprehensive analyses integrating climate, biological, and social sciences are less common. Here we use climate projections under alternative mitigation scenarios to show how changes in environmental variables that limit plant growth could impact ecosystems and people. We show that although the global mean number of days above freezing will increase by up to 7% by 2100 under "business as usual" (representative concentration pathway [RCP] 8.5), suitable growing days will actually decrease globally by up to 11% when other climatic variables that limit plant growth are considered (i.e., temperature, water availability, and solar radiation). Areas in Russia, China, and Canada are projected to gain suitable plant growing days, but the rest of the world will experience losses. Notably, tropical areas could lose up to 200 suitable plant growing days per year. These changes will impact most of the world's terrestrial ecosystems, potentially triggering climate feedbacks. Human populations will also be affected, with up to ~2,100 million of the poorest people in the world (~30% of the world's population) highly vulnerable to changes in the supply of plant-related goods and services. These impacts will be spatially variable, indicating regions where adaptations will be necessary. Changes in suitable plant growing days are projected to be less severe under strong and moderate mitigation scenarios (i.e., RCP 2.6 and RCP 4.5), underscoring the importance of reducing emissions to avoid such disproportionate impacts on ecosystems and people.

No MeSH data available.