Limits...
Fabrication of electrospun poly(D,L lactide-co-glycolide)80/20 scaffolds loaded with diclofenac sodium for tissue engineering.

Nikkola L, Morton T, Balmayor ER, Jukola H, Harlin A, Redl H, van Griensven M, Ashammakhi N - Eur. J. Med. Res. (2015)

Bottom Line: After a high start peak, the release rate decreased considerably during 11 days and lasted about 60 days.During the evaluation of the release kinetics, a material degradation process was observed.MC3T3 cells attached to the diclofenac sodium-loaded scaffold.

View Article: PubMed Central - PubMed

Affiliation: Department of Biomedical Engineering, Tampere University of Technology, Tampere, Finland. lilanikkola@gmail.com.

ABSTRACT

Background: Adaptation of nanotechnology into materials science has also advanced tissue engineering research. Tissues are basically composed of nanoscale structures hence making nanofibrous materials closely resemble natural fibers. Adding a drug release function to such material may further advance their use in tissue repair.

Methods: In the current study, bioabsorbable poly(D,L lactide-co-glycolide)80/20 (PDLGA80/20) was dissolved in a mixture of acetone/dimethylformamide. Twenty percent of diclofenac sodium was added to the solution. Nanofibers were manufactured using electrospinning. The morphology of the obtained scaffolds was analyzed by scanning electron microscopy (SEM). The release of the diclofenac sodium was assessed by UV/Vis spectroscopy. Mouse fibroblasts (MC3T3) were seeded on the scaffolds, and the cell attachment was evaluated with fluorescent microscopy.

Results: The thickness of electrospun nanomats was about 1 mm. SEM analysis showed that polymeric nanofibers containing drug particles formed very interconnected porous nanostructures. The average diameter of the nanofibers was 500 nm. Drug release was measured by means of UV/Vis spectroscopy. After a high start peak, the release rate decreased considerably during 11 days and lasted about 60 days. During the evaluation of the release kinetics, a material degradation process was observed. MC3T3 cells attached to the diclofenac sodium-loaded scaffold.

Conclusions: The nanofibrous porous structure made of PDLGA polymer loaded with diclofenac sodium is feasible to develop, and it may help to improve biomaterial properties for controlled tissue repair and regeneration.

No MeSH data available.


Release profiles of diclofenac sodium from PDLGA80/20 nano-scaffolds. The release study was performed in PBS at 37 °C. On the left scale, the concentration released daily is presented as micrograms per milliliter per day. The closed circles represent non-UV-treated nano-scaffolds, while open circles represent the UV-treated ones. On the right scale, the cumulative release is presented as percentage. Similarly, the closed squares represent non-UV-treated nano-scaffolds, while open squares represent the UV-treated ones
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4465314&req=5

Fig2: Release profiles of diclofenac sodium from PDLGA80/20 nano-scaffolds. The release study was performed in PBS at 37 °C. On the left scale, the concentration released daily is presented as micrograms per milliliter per day. The closed circles represent non-UV-treated nano-scaffolds, while open circles represent the UV-treated ones. On the right scale, the cumulative release is presented as percentage. Similarly, the closed squares represent non-UV-treated nano-scaffolds, while open squares represent the UV-treated ones

Mentions: The drug release profile showed a high initial peak during the first day (burst release). Afterwards, the drug release rate was decreased considerably during the next 11 days from levels of 20 μg/ml/day to a level of 5 μg/ml/day. The release period lasted for about 60 days (Fig. 2). Cumulative release calculations showed that almost all loaded DS was released (e.g., 93 % DS was released after 50 days for the PDLGA80/20 scaffolds not treated with UV). During the drug release studies, the size of the scaffolds was notably reduced (based on visual inspection). Three and a half months after initial incubation in PBS, the scaffolds vanished completely, indicating an intermediate degradation rate. The UV treatment significantly influenced the release of the drug. A lower amount of DS was released from the UV-treated scaffolds when compared to the untreated controls for each point in time and up to 40 days (Fig. 2). After 4 days in PBS at 37 °C, levels of released DS were 1.7 ± 0.6 μg/ml/day for the UV-treated scaffolds in comparison with 9.3 ± 0.8 μg/ml/day for the non-treated ones. Seven days after incubation in PBS, the effect of the UV treatment over the DS release was less pronounced. Nevertheless, this effect was still significant (0.9 ± 0.4 μg/ml/day for the UV-treated scaffolds in comparison with 4.7 ± 0.2 μg/ml/day for the non-treated ones, p < 0.05). In terms of cumulative release, this represents 34 % of DS released after 7 days of incubation for the UV-treated scaffolds in comparison to 78 % of DS released for the non-treated ones.Fig. 2


Fabrication of electrospun poly(D,L lactide-co-glycolide)80/20 scaffolds loaded with diclofenac sodium for tissue engineering.

Nikkola L, Morton T, Balmayor ER, Jukola H, Harlin A, Redl H, van Griensven M, Ashammakhi N - Eur. J. Med. Res. (2015)

Release profiles of diclofenac sodium from PDLGA80/20 nano-scaffolds. The release study was performed in PBS at 37 °C. On the left scale, the concentration released daily is presented as micrograms per milliliter per day. The closed circles represent non-UV-treated nano-scaffolds, while open circles represent the UV-treated ones. On the right scale, the cumulative release is presented as percentage. Similarly, the closed squares represent non-UV-treated nano-scaffolds, while open squares represent the UV-treated ones
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4465314&req=5

Fig2: Release profiles of diclofenac sodium from PDLGA80/20 nano-scaffolds. The release study was performed in PBS at 37 °C. On the left scale, the concentration released daily is presented as micrograms per milliliter per day. The closed circles represent non-UV-treated nano-scaffolds, while open circles represent the UV-treated ones. On the right scale, the cumulative release is presented as percentage. Similarly, the closed squares represent non-UV-treated nano-scaffolds, while open squares represent the UV-treated ones
Mentions: The drug release profile showed a high initial peak during the first day (burst release). Afterwards, the drug release rate was decreased considerably during the next 11 days from levels of 20 μg/ml/day to a level of 5 μg/ml/day. The release period lasted for about 60 days (Fig. 2). Cumulative release calculations showed that almost all loaded DS was released (e.g., 93 % DS was released after 50 days for the PDLGA80/20 scaffolds not treated with UV). During the drug release studies, the size of the scaffolds was notably reduced (based on visual inspection). Three and a half months after initial incubation in PBS, the scaffolds vanished completely, indicating an intermediate degradation rate. The UV treatment significantly influenced the release of the drug. A lower amount of DS was released from the UV-treated scaffolds when compared to the untreated controls for each point in time and up to 40 days (Fig. 2). After 4 days in PBS at 37 °C, levels of released DS were 1.7 ± 0.6 μg/ml/day for the UV-treated scaffolds in comparison with 9.3 ± 0.8 μg/ml/day for the non-treated ones. Seven days after incubation in PBS, the effect of the UV treatment over the DS release was less pronounced. Nevertheless, this effect was still significant (0.9 ± 0.4 μg/ml/day for the UV-treated scaffolds in comparison with 4.7 ± 0.2 μg/ml/day for the non-treated ones, p < 0.05). In terms of cumulative release, this represents 34 % of DS released after 7 days of incubation for the UV-treated scaffolds in comparison to 78 % of DS released for the non-treated ones.Fig. 2

Bottom Line: After a high start peak, the release rate decreased considerably during 11 days and lasted about 60 days.During the evaluation of the release kinetics, a material degradation process was observed.MC3T3 cells attached to the diclofenac sodium-loaded scaffold.

View Article: PubMed Central - PubMed

Affiliation: Department of Biomedical Engineering, Tampere University of Technology, Tampere, Finland. lilanikkola@gmail.com.

ABSTRACT

Background: Adaptation of nanotechnology into materials science has also advanced tissue engineering research. Tissues are basically composed of nanoscale structures hence making nanofibrous materials closely resemble natural fibers. Adding a drug release function to such material may further advance their use in tissue repair.

Methods: In the current study, bioabsorbable poly(D,L lactide-co-glycolide)80/20 (PDLGA80/20) was dissolved in a mixture of acetone/dimethylformamide. Twenty percent of diclofenac sodium was added to the solution. Nanofibers were manufactured using electrospinning. The morphology of the obtained scaffolds was analyzed by scanning electron microscopy (SEM). The release of the diclofenac sodium was assessed by UV/Vis spectroscopy. Mouse fibroblasts (MC3T3) were seeded on the scaffolds, and the cell attachment was evaluated with fluorescent microscopy.

Results: The thickness of electrospun nanomats was about 1 mm. SEM analysis showed that polymeric nanofibers containing drug particles formed very interconnected porous nanostructures. The average diameter of the nanofibers was 500 nm. Drug release was measured by means of UV/Vis spectroscopy. After a high start peak, the release rate decreased considerably during 11 days and lasted about 60 days. During the evaluation of the release kinetics, a material degradation process was observed. MC3T3 cells attached to the diclofenac sodium-loaded scaffold.

Conclusions: The nanofibrous porous structure made of PDLGA polymer loaded with diclofenac sodium is feasible to develop, and it may help to improve biomaterial properties for controlled tissue repair and regeneration.

No MeSH data available.