Limits...
The deep permafrost carbon pool of the Yedoma region in Siberia and Alaska.

Strauss J, Schirrmeister L, Grosse G, Wetterich S, Ulrich M, Herzschuh U, Hubberten HW - Geophys Res Lett (2013)

Bottom Line: Rapid inclusion of labile organic matter into permafrost halted decomposition and resulted in a deep long-term sink.We quantified the OC pool based on field data and extrapolation using geospatial data sets to 83 + 61/-57 Gt for Yedoma deposits and to 128 + 99/-96 Gt for thermokarst deposits.The total Yedoma region 211 + 160/-153 Gt is a substantial amount of thaw-vulnerable OC that must be accounted for in global models.

View Article: PubMed Central - PubMed

Affiliation: Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Periglacial Research Unit Potsdam, Germany.

ABSTRACT

[1] Estimates for circumpolar permafrost organic carbon (OC) storage suggest that this pool contains twice the amount of current atmospheric carbon. The Yedoma region sequestered substantial quantities of OC and is unique because its deep OC, which was incorporated into permafrost during ice age conditions. Rapid inclusion of labile organic matter into permafrost halted decomposition and resulted in a deep long-term sink. We show that the deep frozen OC in the Yedoma region consists of two distinct major subreservoirs: Yedoma deposits (late Pleistocene ice- and organic-rich silty sediments) and deposits formed in thaw-lake basins (generalized as thermokarst deposits). We quantified the OC pool based on field data and extrapolation using geospatial data sets to 83 + 61/-57 Gt for Yedoma deposits and to 128 + 99/-96 Gt for thermokarst deposits. The total Yedoma region 211 + 160/-153 Gt is a substantial amount of thaw-vulnerable OC that must be accounted for in global models.

No MeSH data available.


Related in: MedlinePlus

Location of the study sites. (a) Potential [after Romanovskii, 1993] and fragmented [Jorgenson et al., 2008; Grosse et al., 2013] area of Yedoma deposits in Arctic and sub-Arctic lowlands, including the studied thermokarst deposit areas. Sites are numbered; 1, Cape Mamontov Klyk; 2, Nagym Island; 3, Khardang Island; 4, Kurungnakh Island; 5, Bykovsky Peninsula; 6, Muostakh Island; 7, Buor Khaya Peninsula; 8, Stolbovoy Island; 9, Bel'kovsky Island; 10 and 11, Kotel'ny Island; 12, Maly Lyakhovsky Island; 13, Bol'shoy Lyakhovsky Island; 14, Cape Svyatov Nos; 15, Oyogos Yar; 16, Kytalyk; 17, Duvanny Yar; 18, Kitluk River; 19, Vault Creek tunnel; 20, Dalton Highway; 21, Itkillik River; 22, Colville River; and 23, Camden Bay. For site 18, only thermokarst deposit samples are available, resulting in 22 Yedoma and 10 thermokarst deposit sites. (b) A panchromatic Landsat-7 image of the wintery Svyatoy Nos and Shirokostan peninsulas (12 March 2012, extent of the white box shown in a), illustrating several granite domes mantled by Yedoma deposits and strong dissection by thermokarst depressions (Landsat data source: USGS EROS Data Center). The black box marks the location of the area shown in Figure 2b.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4459201&req=5

fig01: Location of the study sites. (a) Potential [after Romanovskii, 1993] and fragmented [Jorgenson et al., 2008; Grosse et al., 2013] area of Yedoma deposits in Arctic and sub-Arctic lowlands, including the studied thermokarst deposit areas. Sites are numbered; 1, Cape Mamontov Klyk; 2, Nagym Island; 3, Khardang Island; 4, Kurungnakh Island; 5, Bykovsky Peninsula; 6, Muostakh Island; 7, Buor Khaya Peninsula; 8, Stolbovoy Island; 9, Bel'kovsky Island; 10 and 11, Kotel'ny Island; 12, Maly Lyakhovsky Island; 13, Bol'shoy Lyakhovsky Island; 14, Cape Svyatov Nos; 15, Oyogos Yar; 16, Kytalyk; 17, Duvanny Yar; 18, Kitluk River; 19, Vault Creek tunnel; 20, Dalton Highway; 21, Itkillik River; 22, Colville River; and 23, Camden Bay. For site 18, only thermokarst deposit samples are available, resulting in 22 Yedoma and 10 thermokarst deposit sites. (b) A panchromatic Landsat-7 image of the wintery Svyatoy Nos and Shirokostan peninsulas (12 March 2012, extent of the white box shown in a), illustrating several granite domes mantled by Yedoma deposits and strong dissection by thermokarst depressions (Landsat data source: USGS EROS Data Center). The black box marks the location of the area shown in Figure 2b.

Mentions: [2] Organic carbon (OC) reservoirs of global importance include the ocean, atmosphere, living terrestrial biomass, and terrestrial sediments. Recent studies suggest that 1400 to 1850 Gt of frozen OC are stored in northern high-latitude permafrost soils [McGuire et al., 2009; Tarnocai et al., 2009]. In the vast northern permafrost Yedoma region that remained unglaciated during the last ice age, alluvial floodplains, hill slopes, and polygonal lowlands [Strauss et al., 2012] accumulated OC in Yedoma deposits ≤50 m thick [Kanevskiy et al., 2011], while segregated ice (SEI) and massive wedge ice (WI) concurrently formed within the sediments (Figures 1, 2, and S1 in the supporting information (SI)). Yedoma region (Figure 1) permafrost-preserved OC, including ice-rich peat in thaw-lake basins and refrozen lacustrine deposits, is weakly decomposed [Schirrmeister et al., 2011] due to fast incorporation into permafrost from the seasonally thawed active layer. Once frozen, organic matter degradation ceases. Observations and models indicate warming and thawing permafrost in many regions [Romanovsky et al., 2010], an irreversible process on human timescales [Schaefer et al., 2011; MacDougall et al., 2012]. Once unlocked by thaw, permafrost organic matter decomposes and CO2 or CH4 are produced and released [Walter et al., 2006; Schuur et al., 2009; Mackelprang et al., 2011]. Projections suggest that greenhouse gas emissions from permafrost until 2300 (Representative Concentration Pathways 8.5 scenario) [Schneider von Deimling et al., 2012] are comparable in amount to all pre-2000 anthropogenic emissions, thus affecting the global carbon cycle and amplifying surface warming [McGuire et al., 2009; Koven et al., 2011; Schaefer et al., 2011; Burke et al., 2012; Ciais et al., 2012; DeConto et al., 2012; Schneider von Deimling et al., 2012; Schuur et al., 2013].


The deep permafrost carbon pool of the Yedoma region in Siberia and Alaska.

Strauss J, Schirrmeister L, Grosse G, Wetterich S, Ulrich M, Herzschuh U, Hubberten HW - Geophys Res Lett (2013)

Location of the study sites. (a) Potential [after Romanovskii, 1993] and fragmented [Jorgenson et al., 2008; Grosse et al., 2013] area of Yedoma deposits in Arctic and sub-Arctic lowlands, including the studied thermokarst deposit areas. Sites are numbered; 1, Cape Mamontov Klyk; 2, Nagym Island; 3, Khardang Island; 4, Kurungnakh Island; 5, Bykovsky Peninsula; 6, Muostakh Island; 7, Buor Khaya Peninsula; 8, Stolbovoy Island; 9, Bel'kovsky Island; 10 and 11, Kotel'ny Island; 12, Maly Lyakhovsky Island; 13, Bol'shoy Lyakhovsky Island; 14, Cape Svyatov Nos; 15, Oyogos Yar; 16, Kytalyk; 17, Duvanny Yar; 18, Kitluk River; 19, Vault Creek tunnel; 20, Dalton Highway; 21, Itkillik River; 22, Colville River; and 23, Camden Bay. For site 18, only thermokarst deposit samples are available, resulting in 22 Yedoma and 10 thermokarst deposit sites. (b) A panchromatic Landsat-7 image of the wintery Svyatoy Nos and Shirokostan peninsulas (12 March 2012, extent of the white box shown in a), illustrating several granite domes mantled by Yedoma deposits and strong dissection by thermokarst depressions (Landsat data source: USGS EROS Data Center). The black box marks the location of the area shown in Figure 2b.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4459201&req=5

fig01: Location of the study sites. (a) Potential [after Romanovskii, 1993] and fragmented [Jorgenson et al., 2008; Grosse et al., 2013] area of Yedoma deposits in Arctic and sub-Arctic lowlands, including the studied thermokarst deposit areas. Sites are numbered; 1, Cape Mamontov Klyk; 2, Nagym Island; 3, Khardang Island; 4, Kurungnakh Island; 5, Bykovsky Peninsula; 6, Muostakh Island; 7, Buor Khaya Peninsula; 8, Stolbovoy Island; 9, Bel'kovsky Island; 10 and 11, Kotel'ny Island; 12, Maly Lyakhovsky Island; 13, Bol'shoy Lyakhovsky Island; 14, Cape Svyatov Nos; 15, Oyogos Yar; 16, Kytalyk; 17, Duvanny Yar; 18, Kitluk River; 19, Vault Creek tunnel; 20, Dalton Highway; 21, Itkillik River; 22, Colville River; and 23, Camden Bay. For site 18, only thermokarst deposit samples are available, resulting in 22 Yedoma and 10 thermokarst deposit sites. (b) A panchromatic Landsat-7 image of the wintery Svyatoy Nos and Shirokostan peninsulas (12 March 2012, extent of the white box shown in a), illustrating several granite domes mantled by Yedoma deposits and strong dissection by thermokarst depressions (Landsat data source: USGS EROS Data Center). The black box marks the location of the area shown in Figure 2b.
Mentions: [2] Organic carbon (OC) reservoirs of global importance include the ocean, atmosphere, living terrestrial biomass, and terrestrial sediments. Recent studies suggest that 1400 to 1850 Gt of frozen OC are stored in northern high-latitude permafrost soils [McGuire et al., 2009; Tarnocai et al., 2009]. In the vast northern permafrost Yedoma region that remained unglaciated during the last ice age, alluvial floodplains, hill slopes, and polygonal lowlands [Strauss et al., 2012] accumulated OC in Yedoma deposits ≤50 m thick [Kanevskiy et al., 2011], while segregated ice (SEI) and massive wedge ice (WI) concurrently formed within the sediments (Figures 1, 2, and S1 in the supporting information (SI)). Yedoma region (Figure 1) permafrost-preserved OC, including ice-rich peat in thaw-lake basins and refrozen lacustrine deposits, is weakly decomposed [Schirrmeister et al., 2011] due to fast incorporation into permafrost from the seasonally thawed active layer. Once frozen, organic matter degradation ceases. Observations and models indicate warming and thawing permafrost in many regions [Romanovsky et al., 2010], an irreversible process on human timescales [Schaefer et al., 2011; MacDougall et al., 2012]. Once unlocked by thaw, permafrost organic matter decomposes and CO2 or CH4 are produced and released [Walter et al., 2006; Schuur et al., 2009; Mackelprang et al., 2011]. Projections suggest that greenhouse gas emissions from permafrost until 2300 (Representative Concentration Pathways 8.5 scenario) [Schneider von Deimling et al., 2012] are comparable in amount to all pre-2000 anthropogenic emissions, thus affecting the global carbon cycle and amplifying surface warming [McGuire et al., 2009; Koven et al., 2011; Schaefer et al., 2011; Burke et al., 2012; Ciais et al., 2012; DeConto et al., 2012; Schneider von Deimling et al., 2012; Schuur et al., 2013].

Bottom Line: Rapid inclusion of labile organic matter into permafrost halted decomposition and resulted in a deep long-term sink.We quantified the OC pool based on field data and extrapolation using geospatial data sets to 83 + 61/-57 Gt for Yedoma deposits and to 128 + 99/-96 Gt for thermokarst deposits.The total Yedoma region 211 + 160/-153 Gt is a substantial amount of thaw-vulnerable OC that must be accounted for in global models.

View Article: PubMed Central - PubMed

Affiliation: Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Periglacial Research Unit Potsdam, Germany.

ABSTRACT

[1] Estimates for circumpolar permafrost organic carbon (OC) storage suggest that this pool contains twice the amount of current atmospheric carbon. The Yedoma region sequestered substantial quantities of OC and is unique because its deep OC, which was incorporated into permafrost during ice age conditions. Rapid inclusion of labile organic matter into permafrost halted decomposition and resulted in a deep long-term sink. We show that the deep frozen OC in the Yedoma region consists of two distinct major subreservoirs: Yedoma deposits (late Pleistocene ice- and organic-rich silty sediments) and deposits formed in thaw-lake basins (generalized as thermokarst deposits). We quantified the OC pool based on field data and extrapolation using geospatial data sets to 83 + 61/-57 Gt for Yedoma deposits and to 128 + 99/-96 Gt for thermokarst deposits. The total Yedoma region 211 + 160/-153 Gt is a substantial amount of thaw-vulnerable OC that must be accounted for in global models.

No MeSH data available.


Related in: MedlinePlus