Limits...
Female mice ultrasonically interact with males during courtship displays.

Neunuebel JP, Taylor AL, Arthur BJ, Egnor SE - Elife (2015)

Bottom Line: Because of this similarity, and the difficulty of assigning vocalizations to individuals, the vocal contribution of each individual during courtship is unknown.Males and females jointly increased their vocalization rates during chases.Furthermore, a female's participation in these vocal interactions may function as a signal that indicates a state of increased receptivity.

View Article: PubMed Central - PubMed

Affiliation: Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States.

ABSTRACT
During courtship males attract females with elaborate behaviors. In mice, these displays include ultrasonic vocalizations. Ultrasonic courtship vocalizations were previously attributed to the courting male, despite evidence that both sexes produce virtually indistinguishable vocalizations. Because of this similarity, and the difficulty of assigning vocalizations to individuals, the vocal contribution of each individual during courtship is unknown. To address this question, we developed a microphone array system to localize vocalizations from socially interacting, individual adult mice. With this system, we show that female mice vocally interact with males during courtship. Males and females jointly increased their vocalization rates during chases. Furthermore, a female's participation in these vocal interactions may function as a signal that indicates a state of increased receptivity. Our results reveal a novel form of vocal communication during mouse courtship, and lay the groundwork for a mechanistic dissection of communication during social behavior.

No MeSH data available.


Related in: MedlinePlus

Mice participating in a vocal sequence are close to each other.(A) Example trajectories of vocal and non-vocal pairs of mice. (B) Vocal-sequence-triggered averages show that vocal (v) mice are faster at the time of the initial vocalization than either before or after the event (p < 10−6). The speed of the non-vocal (nv) mice did not change significantly over time (p > 0.99). For each event, the instantaneous speeds (±30 s from trigger start time) were averaged for the vocal or non-vocal pair of mice. Colored and black lines represent the average speed between vocal and non-vocal pairs, respectively. (C) The vocal pair was significantly closer at vocal sequence onset than either before or after the event (p < 10−6). Average distance between non-vocal mice did not change significantly (p > 0.99). Red arrows denote the periods in panel D. For B and C, shaded patch indicates SEM across groups (n = 7) and dashed vertical lines denote the time of initial trigger vocalizations. (D) Heat maps of relative position of female (top row) and male (bottom row) mice preceding (pre), during (0), and following (post) a vocal sequence. Males are significantly clustered behind the females at vocal sequence onset compared to before or after (p < 0.001).DOI:http://dx.doi.org/10.7554/eLife.06203.008
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4447045&req=5

fig6: Mice participating in a vocal sequence are close to each other.(A) Example trajectories of vocal and non-vocal pairs of mice. (B) Vocal-sequence-triggered averages show that vocal (v) mice are faster at the time of the initial vocalization than either before or after the event (p < 10−6). The speed of the non-vocal (nv) mice did not change significantly over time (p > 0.99). For each event, the instantaneous speeds (±30 s from trigger start time) were averaged for the vocal or non-vocal pair of mice. Colored and black lines represent the average speed between vocal and non-vocal pairs, respectively. (C) The vocal pair was significantly closer at vocal sequence onset than either before or after the event (p < 10−6). Average distance between non-vocal mice did not change significantly (p > 0.99). Red arrows denote the periods in panel D. For B and C, shaded patch indicates SEM across groups (n = 7) and dashed vertical lines denote the time of initial trigger vocalizations. (D) Heat maps of relative position of female (top row) and male (bottom row) mice preceding (pre), during (0), and following (post) a vocal sequence. Males are significantly clustered behind the females at vocal sequence onset compared to before or after (p < 0.001).DOI:http://dx.doi.org/10.7554/eLife.06203.008

Mentions: To determine whether this temporal coordination in vocalization was associated with a particular social behavior we identified instances in which a vocalization from a single male was followed within 1 s by one or more vocalizations from a single female. This pattern was called a vocal sequence and the vocalizing male and female were called the vocal pair. Because four mice were present in the cage, the other mice were called the non-vocal pair. For each pair, we measured the speed and distance between the male and female during a 60 s window centered on vocal sequence onset (see Figure 6A for example trajectories). The speed of the vocal pair was significantly faster at the time of the vocal sequence than either before or after the event (Figure 6B; before: 1–30 s, after: 2–30 s; one-way ANOVA, F1740,10,446 = 11.9, p < 10−6). Despite a slight peak, the speed of the non-vocal pair did not change significantly over time (one-way ANOVA, F1740,10,446 = 1.0, p > 0.9). We believe this peak occurs because all four mice are in the same cage, and therefore the behavior of the vocal pair may affect the behavior of the non-vocal pair. Moreover, the members of a vocal pair were significantly closer to each other at the onset of the vocal sequence than either before or after the event (Figure 6C; before: 30–3.2 s, after: 5–30 s; one-way ANOVA, F1740,10,446 = 15.5, p < 10−6). In contrast, the distance between non-vocal mice did not change significantly over time (one-way ANOVA, F1740,10,446 = 0.4, p > 0.99). For the vocal pair, we examined the relative positions of the mice before, during, and after the vocal sequence (−25, 0, and 25 s, respectively). At the time of the vocal sequence, the male positions were significantly more clustered behind the females than either before or after the event (Figure 6D; female-centered: = 220.9, p < 10−5, Tukey-type multiple comparison, before, q = 15.1, p < 0.001, after, q = 16.9, p < 0.001; male-centered: = 198.9, p < 10−5, Tukey-type multiple comparison, before, q = 15.1, p < 0.001, after, q = 14.4, p < 0.001). These analyses show that vocal interaction between a male and female can occur when the mice are in close proximity to each other, moving quickly, with the male positioned behind the female. This behavior strongly resembles a chase, a fundamental component of mouse courtship (Van Oortmerssen, 1971).10.7554/eLife.06203.008Figure 6.Mice participating in a vocal sequence are close to each other.


Female mice ultrasonically interact with males during courtship displays.

Neunuebel JP, Taylor AL, Arthur BJ, Egnor SE - Elife (2015)

Mice participating in a vocal sequence are close to each other.(A) Example trajectories of vocal and non-vocal pairs of mice. (B) Vocal-sequence-triggered averages show that vocal (v) mice are faster at the time of the initial vocalization than either before or after the event (p < 10−6). The speed of the non-vocal (nv) mice did not change significantly over time (p > 0.99). For each event, the instantaneous speeds (±30 s from trigger start time) were averaged for the vocal or non-vocal pair of mice. Colored and black lines represent the average speed between vocal and non-vocal pairs, respectively. (C) The vocal pair was significantly closer at vocal sequence onset than either before or after the event (p < 10−6). Average distance between non-vocal mice did not change significantly (p > 0.99). Red arrows denote the periods in panel D. For B and C, shaded patch indicates SEM across groups (n = 7) and dashed vertical lines denote the time of initial trigger vocalizations. (D) Heat maps of relative position of female (top row) and male (bottom row) mice preceding (pre), during (0), and following (post) a vocal sequence. Males are significantly clustered behind the females at vocal sequence onset compared to before or after (p < 0.001).DOI:http://dx.doi.org/10.7554/eLife.06203.008
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4447045&req=5

fig6: Mice participating in a vocal sequence are close to each other.(A) Example trajectories of vocal and non-vocal pairs of mice. (B) Vocal-sequence-triggered averages show that vocal (v) mice are faster at the time of the initial vocalization than either before or after the event (p < 10−6). The speed of the non-vocal (nv) mice did not change significantly over time (p > 0.99). For each event, the instantaneous speeds (±30 s from trigger start time) were averaged for the vocal or non-vocal pair of mice. Colored and black lines represent the average speed between vocal and non-vocal pairs, respectively. (C) The vocal pair was significantly closer at vocal sequence onset than either before or after the event (p < 10−6). Average distance between non-vocal mice did not change significantly (p > 0.99). Red arrows denote the periods in panel D. For B and C, shaded patch indicates SEM across groups (n = 7) and dashed vertical lines denote the time of initial trigger vocalizations. (D) Heat maps of relative position of female (top row) and male (bottom row) mice preceding (pre), during (0), and following (post) a vocal sequence. Males are significantly clustered behind the females at vocal sequence onset compared to before or after (p < 0.001).DOI:http://dx.doi.org/10.7554/eLife.06203.008
Mentions: To determine whether this temporal coordination in vocalization was associated with a particular social behavior we identified instances in which a vocalization from a single male was followed within 1 s by one or more vocalizations from a single female. This pattern was called a vocal sequence and the vocalizing male and female were called the vocal pair. Because four mice were present in the cage, the other mice were called the non-vocal pair. For each pair, we measured the speed and distance between the male and female during a 60 s window centered on vocal sequence onset (see Figure 6A for example trajectories). The speed of the vocal pair was significantly faster at the time of the vocal sequence than either before or after the event (Figure 6B; before: 1–30 s, after: 2–30 s; one-way ANOVA, F1740,10,446 = 11.9, p < 10−6). Despite a slight peak, the speed of the non-vocal pair did not change significantly over time (one-way ANOVA, F1740,10,446 = 1.0, p > 0.9). We believe this peak occurs because all four mice are in the same cage, and therefore the behavior of the vocal pair may affect the behavior of the non-vocal pair. Moreover, the members of a vocal pair were significantly closer to each other at the onset of the vocal sequence than either before or after the event (Figure 6C; before: 30–3.2 s, after: 5–30 s; one-way ANOVA, F1740,10,446 = 15.5, p < 10−6). In contrast, the distance between non-vocal mice did not change significantly over time (one-way ANOVA, F1740,10,446 = 0.4, p > 0.99). For the vocal pair, we examined the relative positions of the mice before, during, and after the vocal sequence (−25, 0, and 25 s, respectively). At the time of the vocal sequence, the male positions were significantly more clustered behind the females than either before or after the event (Figure 6D; female-centered: = 220.9, p < 10−5, Tukey-type multiple comparison, before, q = 15.1, p < 0.001, after, q = 16.9, p < 0.001; male-centered: = 198.9, p < 10−5, Tukey-type multiple comparison, before, q = 15.1, p < 0.001, after, q = 14.4, p < 0.001). These analyses show that vocal interaction between a male and female can occur when the mice are in close proximity to each other, moving quickly, with the male positioned behind the female. This behavior strongly resembles a chase, a fundamental component of mouse courtship (Van Oortmerssen, 1971).10.7554/eLife.06203.008Figure 6.Mice participating in a vocal sequence are close to each other.

Bottom Line: Because of this similarity, and the difficulty of assigning vocalizations to individuals, the vocal contribution of each individual during courtship is unknown.Males and females jointly increased their vocalization rates during chases.Furthermore, a female's participation in these vocal interactions may function as a signal that indicates a state of increased receptivity.

View Article: PubMed Central - PubMed

Affiliation: Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States.

ABSTRACT
During courtship males attract females with elaborate behaviors. In mice, these displays include ultrasonic vocalizations. Ultrasonic courtship vocalizations were previously attributed to the courting male, despite evidence that both sexes produce virtually indistinguishable vocalizations. Because of this similarity, and the difficulty of assigning vocalizations to individuals, the vocal contribution of each individual during courtship is unknown. To address this question, we developed a microphone array system to localize vocalizations from socially interacting, individual adult mice. With this system, we show that female mice vocally interact with males during courtship. Males and females jointly increased their vocalization rates during chases. Furthermore, a female's participation in these vocal interactions may function as a signal that indicates a state of increased receptivity. Our results reveal a novel form of vocal communication during mouse courtship, and lay the groundwork for a mechanistic dissection of communication during social behavior.

No MeSH data available.


Related in: MedlinePlus