Limits...
Laser-stimulated fluorescence in paleontology.

Kaye TG, Falk AR, Pittman M, Sereno PC, Martin LD, Burnham DA, Gong E, Xu X, Wang Y - PLoS ONE (2015)

Bottom Line: A laser's ability to concentrate very high flux rates both at the macroscopic and microscopic levels results in specimens fluorescing in ways a standard UV bulb cannot induce.The recent cost reductions in medium-power short wavelength lasers and use of standard photographic filters has now made this technique widely accessible to researchers.This represents a highly cost-effective way to address paleontology's preparatory bottleneck.

View Article: PubMed Central - PubMed

Affiliation: Burke Museum of Natural History and Culture, Seattle, Washington, United States of America.

ABSTRACT
Fluorescence using ultraviolet (UV) light has seen increased use as a tool in paleontology over the last decade. Laser-stimulated fluorescence (LSF) is a next generation technique that is emerging as a way to fluoresce paleontological specimens that remain dark under typical UV. A laser's ability to concentrate very high flux rates both at the macroscopic and microscopic levels results in specimens fluorescing in ways a standard UV bulb cannot induce. Presented here are five paleontological case histories that illustrate the technique across a broad range of specimens and scales. Novel uses such as back-lighting opaque specimens to reveal detail and detection of specimens completely obscured by matrix are highlighted in these examples. The recent cost reductions in medium-power short wavelength lasers and use of standard photographic filters has now made this technique widely accessible to researchers. This technology has the potential to automate multiple aspects of paleontology, including preparation and sorting of microfossils. This represents a highly cost-effective way to address paleontology's preparatory bottleneck.

No MeSH data available.


Feather under reflected and matrix fluoresced illumination.Green River Formation feather using identical images under different lighting conditions. A, Reflected light microscopy, only barbs are visible. B, Polarized light, some traces of barbules. C, Laser-stimulated fluorescence of matrix behind the carbon film backlights the feather and renders barbules visible across the entire field of view. Scale bar 0.5 mm.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4446324&req=5

pone.0125923.g003: Feather under reflected and matrix fluoresced illumination.Green River Formation feather using identical images under different lighting conditions. A, Reflected light microscopy, only barbs are visible. B, Polarized light, some traces of barbules. C, Laser-stimulated fluorescence of matrix behind the carbon film backlights the feather and renders barbules visible across the entire field of view. Scale bar 0.5 mm.

Mentions: Fig 3 shows a feather from the Green River Formation under the microscope in reflected (Fig 3A) and polarized light (Fig 3B). It clearly shows the barbs, but no barbules are immediately apparent. Fig 3C shows the same field using a smaller laser spot to fluoresce the matrix under the carbon film. It is clear that barbules are in fact present and widely distributed in this specimen. Multiple specimens from the same formations showed these results (Fig 4). Back side illumination also removes topography from the image and makes partially buried barbules visible.


Laser-stimulated fluorescence in paleontology.

Kaye TG, Falk AR, Pittman M, Sereno PC, Martin LD, Burnham DA, Gong E, Xu X, Wang Y - PLoS ONE (2015)

Feather under reflected and matrix fluoresced illumination.Green River Formation feather using identical images under different lighting conditions. A, Reflected light microscopy, only barbs are visible. B, Polarized light, some traces of barbules. C, Laser-stimulated fluorescence of matrix behind the carbon film backlights the feather and renders barbules visible across the entire field of view. Scale bar 0.5 mm.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4446324&req=5

pone.0125923.g003: Feather under reflected and matrix fluoresced illumination.Green River Formation feather using identical images under different lighting conditions. A, Reflected light microscopy, only barbs are visible. B, Polarized light, some traces of barbules. C, Laser-stimulated fluorescence of matrix behind the carbon film backlights the feather and renders barbules visible across the entire field of view. Scale bar 0.5 mm.
Mentions: Fig 3 shows a feather from the Green River Formation under the microscope in reflected (Fig 3A) and polarized light (Fig 3B). It clearly shows the barbs, but no barbules are immediately apparent. Fig 3C shows the same field using a smaller laser spot to fluoresce the matrix under the carbon film. It is clear that barbules are in fact present and widely distributed in this specimen. Multiple specimens from the same formations showed these results (Fig 4). Back side illumination also removes topography from the image and makes partially buried barbules visible.

Bottom Line: A laser's ability to concentrate very high flux rates both at the macroscopic and microscopic levels results in specimens fluorescing in ways a standard UV bulb cannot induce.The recent cost reductions in medium-power short wavelength lasers and use of standard photographic filters has now made this technique widely accessible to researchers.This represents a highly cost-effective way to address paleontology's preparatory bottleneck.

View Article: PubMed Central - PubMed

Affiliation: Burke Museum of Natural History and Culture, Seattle, Washington, United States of America.

ABSTRACT
Fluorescence using ultraviolet (UV) light has seen increased use as a tool in paleontology over the last decade. Laser-stimulated fluorescence (LSF) is a next generation technique that is emerging as a way to fluoresce paleontological specimens that remain dark under typical UV. A laser's ability to concentrate very high flux rates both at the macroscopic and microscopic levels results in specimens fluorescing in ways a standard UV bulb cannot induce. Presented here are five paleontological case histories that illustrate the technique across a broad range of specimens and scales. Novel uses such as back-lighting opaque specimens to reveal detail and detection of specimens completely obscured by matrix are highlighted in these examples. The recent cost reductions in medium-power short wavelength lasers and use of standard photographic filters has now made this technique widely accessible to researchers. This technology has the potential to automate multiple aspects of paleontology, including preparation and sorting of microfossils. This represents a highly cost-effective way to address paleontology's preparatory bottleneck.

No MeSH data available.