Limits...
Genotypic differences in architectural and physiological responses to water restriction in rose bush.

Li-Marchetti C, Le Bras C, Relion D, Citerne S, Huché-Thélier L, Sakr S, Morel P, Crespel L - Front Plant Sci (2015)

Bottom Line: The physiological analysis explained, at least in part, the more moderate architectural response of 'Baipome' compared to 'The Fairy,' but not that of Hw336 which is an interspecific hybrid.Such physiological responses in 'Baipome' could be related to: (i) the maintenance of the stimulation of budbreak and photosynthetic activity during water restriction periods due to a higher concentration in conjugated cytokinins (cCK) and to a lower concentration in SA; (ii) a better resumption of budbreak during the re-watering periods due to a lower concentration in ABA during this period.When associated with the six architectural descriptors, cCK, SA and ABA, which explained the genotypic differences in this study, could be used as selection criteria for breeding programs aimed at improving plant shape and tolerance to water restriction.

View Article: PubMed Central - PubMed

Affiliation: ASTREDHOR - Institut Technique de l'Horticulture, Paris France ; Agrocampus Ouest, Unité Mixte de Recherche 1345, Institut de Recherche en Horticulture et Semences (INRA-Agrocampus Ouest-Université d'Angers), Angers France.

ABSTRACT
The shape and, therefore, the architecture of the plant are dependent on genetic and environmental factors such as water supply. The architecture determines the visual quality, a key criterion underlying the decision to purchase an ornamental potted plant. The aim of this study was to analyze genotypic responses of eight rose bush cultivars to alternation of water restriction and re-watering periods, with soil water potential of -20 and -10 kPa respectively. Responses were evaluated at the architectural level through 3D digitalization using six architectural variables and at the physiological level by measuring stomatal conductance, water content, hormones [abscisic acid (ABA), auxin, cytokinins, jasmonic acid, and salicylic acid (SA)], sugars (sucrose, fructose, and glucose), and proline. Highly significant genotype and watering effects were revealed for all the architectural variables measured, as well as genotype × watering interaction, with three distinct genotypic architectural responses to water restriction - weak, moderate and strong - represented by Hw336, 'Baipome' and 'The Fairy,' respectively. The physiological analysis explained, at least in part, the more moderate architectural response of 'Baipome' compared to 'The Fairy,' but not that of Hw336 which is an interspecific hybrid. Such physiological responses in 'Baipome' could be related to: (i) the maintenance of the stimulation of budbreak and photosynthetic activity during water restriction periods due to a higher concentration in conjugated cytokinins (cCK) and to a lower concentration in SA; (ii) a better resumption of budbreak during the re-watering periods due to a lower concentration in ABA during this period. When associated with the six architectural descriptors, cCK, SA and ABA, which explained the genotypic differences in this study, could be used as selection criteria for breeding programs aimed at improving plant shape and tolerance to water restriction.

No MeSH data available.


Related in: MedlinePlus

Application of the water restriction (WR) treatment based on developmental stage of the primary axis [bud burst of the rooted cutting, visible flower bud of the order 1 axis (VFB1), visible flower bud of the order 2 axes (VFB2) and elementary architectural structure (EAS) stage]. 14-days (14d) periods of water restriction (WRP1 and WRP2) are indicated by dotted lines and periods of re-watering (WWP1 and WWP2) by continuous lines.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4443023&req=5

Figure 2: Application of the water restriction (WR) treatment based on developmental stage of the primary axis [bud burst of the rooted cutting, visible flower bud of the order 1 axis (VFB1), visible flower bud of the order 2 axes (VFB2) and elementary architectural structure (EAS) stage]. 14-days (14d) periods of water restriction (WRP1 and WRP2) are indicated by dotted lines and periods of re-watering (WWP1 and WWP2) by continuous lines.

Mentions: For the control treatment, the soil water potential was maintained at -10 kPa throughout the experiment. For the WR treatment, plants were subjected to two successive water restriction periods (WRPs) of 14 days each, WRP1 and WRP2, respectively (Figure 2). During these two WRPs, the soil water potential was maintained at -20 kPa by manual watering. WRP1 was applied when the floral bud of the order 1 axis became visible (VFB1), and WRP2 when the floral buds of the order 2 axes were visible (VFB2). Since the beginning of the WRP depends on the phenological stage, WRP were not necessarily synchronized between cultivars. After each WRP, plants were well-watered [corresponding to well-watered periods (WWPs)] at a soil water potential of -10 kPa, WWP1 and WWP2, respectively. For each treatment and cultivar, the soil water potential was measured by a tensiometer and sub-irrigation was triggered when a defined threshold was reached.


Genotypic differences in architectural and physiological responses to water restriction in rose bush.

Li-Marchetti C, Le Bras C, Relion D, Citerne S, Huché-Thélier L, Sakr S, Morel P, Crespel L - Front Plant Sci (2015)

Application of the water restriction (WR) treatment based on developmental stage of the primary axis [bud burst of the rooted cutting, visible flower bud of the order 1 axis (VFB1), visible flower bud of the order 2 axes (VFB2) and elementary architectural structure (EAS) stage]. 14-days (14d) periods of water restriction (WRP1 and WRP2) are indicated by dotted lines and periods of re-watering (WWP1 and WWP2) by continuous lines.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4443023&req=5

Figure 2: Application of the water restriction (WR) treatment based on developmental stage of the primary axis [bud burst of the rooted cutting, visible flower bud of the order 1 axis (VFB1), visible flower bud of the order 2 axes (VFB2) and elementary architectural structure (EAS) stage]. 14-days (14d) periods of water restriction (WRP1 and WRP2) are indicated by dotted lines and periods of re-watering (WWP1 and WWP2) by continuous lines.
Mentions: For the control treatment, the soil water potential was maintained at -10 kPa throughout the experiment. For the WR treatment, plants were subjected to two successive water restriction periods (WRPs) of 14 days each, WRP1 and WRP2, respectively (Figure 2). During these two WRPs, the soil water potential was maintained at -20 kPa by manual watering. WRP1 was applied when the floral bud of the order 1 axis became visible (VFB1), and WRP2 when the floral buds of the order 2 axes were visible (VFB2). Since the beginning of the WRP depends on the phenological stage, WRP were not necessarily synchronized between cultivars. After each WRP, plants were well-watered [corresponding to well-watered periods (WWPs)] at a soil water potential of -10 kPa, WWP1 and WWP2, respectively. For each treatment and cultivar, the soil water potential was measured by a tensiometer and sub-irrigation was triggered when a defined threshold was reached.

Bottom Line: The physiological analysis explained, at least in part, the more moderate architectural response of 'Baipome' compared to 'The Fairy,' but not that of Hw336 which is an interspecific hybrid.Such physiological responses in 'Baipome' could be related to: (i) the maintenance of the stimulation of budbreak and photosynthetic activity during water restriction periods due to a higher concentration in conjugated cytokinins (cCK) and to a lower concentration in SA; (ii) a better resumption of budbreak during the re-watering periods due to a lower concentration in ABA during this period.When associated with the six architectural descriptors, cCK, SA and ABA, which explained the genotypic differences in this study, could be used as selection criteria for breeding programs aimed at improving plant shape and tolerance to water restriction.

View Article: PubMed Central - PubMed

Affiliation: ASTREDHOR - Institut Technique de l'Horticulture, Paris France ; Agrocampus Ouest, Unité Mixte de Recherche 1345, Institut de Recherche en Horticulture et Semences (INRA-Agrocampus Ouest-Université d'Angers), Angers France.

ABSTRACT
The shape and, therefore, the architecture of the plant are dependent on genetic and environmental factors such as water supply. The architecture determines the visual quality, a key criterion underlying the decision to purchase an ornamental potted plant. The aim of this study was to analyze genotypic responses of eight rose bush cultivars to alternation of water restriction and re-watering periods, with soil water potential of -20 and -10 kPa respectively. Responses were evaluated at the architectural level through 3D digitalization using six architectural variables and at the physiological level by measuring stomatal conductance, water content, hormones [abscisic acid (ABA), auxin, cytokinins, jasmonic acid, and salicylic acid (SA)], sugars (sucrose, fructose, and glucose), and proline. Highly significant genotype and watering effects were revealed for all the architectural variables measured, as well as genotype × watering interaction, with three distinct genotypic architectural responses to water restriction - weak, moderate and strong - represented by Hw336, 'Baipome' and 'The Fairy,' respectively. The physiological analysis explained, at least in part, the more moderate architectural response of 'Baipome' compared to 'The Fairy,' but not that of Hw336 which is an interspecific hybrid. Such physiological responses in 'Baipome' could be related to: (i) the maintenance of the stimulation of budbreak and photosynthetic activity during water restriction periods due to a higher concentration in conjugated cytokinins (cCK) and to a lower concentration in SA; (ii) a better resumption of budbreak during the re-watering periods due to a lower concentration in ABA during this period. When associated with the six architectural descriptors, cCK, SA and ABA, which explained the genotypic differences in this study, could be used as selection criteria for breeding programs aimed at improving plant shape and tolerance to water restriction.

No MeSH data available.


Related in: MedlinePlus