Limits...
Efficient Inhibition of Ovarian Cancer by Gelonin Toxin Gene Delivered by Biodegradable Cationic Heparin-polyethyleneimine Nanogels.

Bai Y, Gou M, Yi T, Yang L, Liu L, Lin X, Su D, Wei Y, Zhao X - Int J Med Sci (2015)

Bottom Line: Treatment for intraperitoneal carcinomatosis with pGelonin/HPEI complexes reduced the tumor weight by ~58.55% compared to the control groups (P<0.05).The antitumor effect was accompanied by increased apoptosis and reduced cell proliferation (P<0.05).No significant side effects were observed with i.p. administration of the pGelonin/HPEI complexes.

View Article: PubMed Central - PubMed

Affiliation: 1. Department of Gynecology and Obstetrics, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China.

ABSTRACT
The use of toxins for cancer therapy has great promise. Gelonin, a potent plant toxin, causes cell death by inactivating the 60S ribosomal subunit. Recently, we developed a novel gene delivery system using biodegradable cationic heparin-polyethyleneimine (HPEI) nanogels. In the current study, the antitumor activity of a recombinant plasmid expressing gelonin (pGelonin) on human ovarian cancer was assessed. The application of HPEI nanogels, was also evaluated. Gelonin-cDNA was cloned into the pVAX1 plasmid vector and transfected into SKOV3 human ovarian cancer cells using biodegradable cationic HPEI nanogels. The expression of gelonin in vitro and in vivo was confirmed using RT-PCR and western blot analysis. Cell viability and apoptosis were examined using an MTT assay and flow cytometric analysis. For the in vivo study, an SKOV3 intraperitoneal ovarian carcinomatosis model was established, and nude mice were randomly assigned into four groups receiving i.p. administration of pGelonin/HPEI complexes, pVAX/HPEI complexes, HPEI alone and 5% glucose solution. The tumor weight was monitored, and a TUNEL assay and Ki-67 immunohistochemistry were performed to evaluate apoptosis and cell proliferation in the tumor tissue sections, respectively. Gelonin was efficiently expressed in SKOV3 cancer cells in vitro and in vivo using pGelonin incorporated with HPEI nanogels. The pGelonin/HPEI complexes inhibited cell viability and induced apoptosis in the cell culture. Treatment for intraperitoneal carcinomatosis with pGelonin/HPEI complexes reduced the tumor weight by ~58.55% compared to the control groups (P<0.05). The antitumor effect was accompanied by increased apoptosis and reduced cell proliferation (P<0.05). No significant side effects were observed with i.p. administration of the pGelonin/HPEI complexes. Our data indicate that HPEI nanogel-delivered pGelonin may have promising applications against human ovarian cancer.

No MeSH data available.


Related in: MedlinePlus

Antitumor efficacy of pGFP/HPEI complexes on SKOV3 cells. (A) Inhibition of cell viability by pGFP/HPEI complexes. Cell viability was determined by MTT assay before and 24, 48 and 72 h after transfection, respectively. Cell viability was significantly reduced in pGFP/HPEI group compared to medium alone, HPEI or pVAX/HPEI group. (B) Cellular apoptosis identified by flow cytometric analysis using propidium iodide staining method.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC4441064&req=5

Figure 2: Antitumor efficacy of pGFP/HPEI complexes on SKOV3 cells. (A) Inhibition of cell viability by pGFP/HPEI complexes. Cell viability was determined by MTT assay before and 24, 48 and 72 h after transfection, respectively. Cell viability was significantly reduced in pGFP/HPEI group compared to medium alone, HPEI or pVAX/HPEI group. (B) Cellular apoptosis identified by flow cytometric analysis using propidium iodide staining method.

Mentions: SKOV3 ovarian cancer cells were assayed for cell viability after treatment with the pGelonin/HPEI complexes. The MTT assay revealed that pGelonin/HPEI complexes significantly reduced cell viability compared to the three control groups (Fig. 2A., P<0.05).


Efficient Inhibition of Ovarian Cancer by Gelonin Toxin Gene Delivered by Biodegradable Cationic Heparin-polyethyleneimine Nanogels.

Bai Y, Gou M, Yi T, Yang L, Liu L, Lin X, Su D, Wei Y, Zhao X - Int J Med Sci (2015)

Antitumor efficacy of pGFP/HPEI complexes on SKOV3 cells. (A) Inhibition of cell viability by pGFP/HPEI complexes. Cell viability was determined by MTT assay before and 24, 48 and 72 h after transfection, respectively. Cell viability was significantly reduced in pGFP/HPEI group compared to medium alone, HPEI or pVAX/HPEI group. (B) Cellular apoptosis identified by flow cytometric analysis using propidium iodide staining method.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC4441064&req=5

Figure 2: Antitumor efficacy of pGFP/HPEI complexes on SKOV3 cells. (A) Inhibition of cell viability by pGFP/HPEI complexes. Cell viability was determined by MTT assay before and 24, 48 and 72 h after transfection, respectively. Cell viability was significantly reduced in pGFP/HPEI group compared to medium alone, HPEI or pVAX/HPEI group. (B) Cellular apoptosis identified by flow cytometric analysis using propidium iodide staining method.
Mentions: SKOV3 ovarian cancer cells were assayed for cell viability after treatment with the pGelonin/HPEI complexes. The MTT assay revealed that pGelonin/HPEI complexes significantly reduced cell viability compared to the three control groups (Fig. 2A., P<0.05).

Bottom Line: Treatment for intraperitoneal carcinomatosis with pGelonin/HPEI complexes reduced the tumor weight by ~58.55% compared to the control groups (P<0.05).The antitumor effect was accompanied by increased apoptosis and reduced cell proliferation (P<0.05).No significant side effects were observed with i.p. administration of the pGelonin/HPEI complexes.

View Article: PubMed Central - PubMed

Affiliation: 1. Department of Gynecology and Obstetrics, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China.

ABSTRACT
The use of toxins for cancer therapy has great promise. Gelonin, a potent plant toxin, causes cell death by inactivating the 60S ribosomal subunit. Recently, we developed a novel gene delivery system using biodegradable cationic heparin-polyethyleneimine (HPEI) nanogels. In the current study, the antitumor activity of a recombinant plasmid expressing gelonin (pGelonin) on human ovarian cancer was assessed. The application of HPEI nanogels, was also evaluated. Gelonin-cDNA was cloned into the pVAX1 plasmid vector and transfected into SKOV3 human ovarian cancer cells using biodegradable cationic HPEI nanogels. The expression of gelonin in vitro and in vivo was confirmed using RT-PCR and western blot analysis. Cell viability and apoptosis were examined using an MTT assay and flow cytometric analysis. For the in vivo study, an SKOV3 intraperitoneal ovarian carcinomatosis model was established, and nude mice were randomly assigned into four groups receiving i.p. administration of pGelonin/HPEI complexes, pVAX/HPEI complexes, HPEI alone and 5% glucose solution. The tumor weight was monitored, and a TUNEL assay and Ki-67 immunohistochemistry were performed to evaluate apoptosis and cell proliferation in the tumor tissue sections, respectively. Gelonin was efficiently expressed in SKOV3 cancer cells in vitro and in vivo using pGelonin incorporated with HPEI nanogels. The pGelonin/HPEI complexes inhibited cell viability and induced apoptosis in the cell culture. Treatment for intraperitoneal carcinomatosis with pGelonin/HPEI complexes reduced the tumor weight by ~58.55% compared to the control groups (P<0.05). The antitumor effect was accompanied by increased apoptosis and reduced cell proliferation (P<0.05). No significant side effects were observed with i.p. administration of the pGelonin/HPEI complexes. Our data indicate that HPEI nanogel-delivered pGelonin may have promising applications against human ovarian cancer.

No MeSH data available.


Related in: MedlinePlus