Limits...
Endophytic and epiphytic microbes as "sources" of bioactive agents.

Newman DJ, Cragg GM - Front Chem (2015)

Bottom Line: Beginning with the report by Stierle and Strobel in 1993 on taxol((R)) production by an endophytic fungus (Stierle et al., 1993), it is possible that a number of the agents now used as leads to treatments of diseases in man, are not produced by the plant or invertebrate host from which they were first isolated and identified.They are probably the product of a microbe in, on or around the macroorganism.At times there is an intricate "dance" between a precursor produced by a microbe, and interactions within the macroorganism, or in certain cases, a fungus, that ends up with the production of a novel agent that has potential as a treatment for a human disease.

View Article: PubMed Central - PubMed

Affiliation: Retired, Wayne, PA, USA.

ABSTRACT
Beginning with the report by Stierle and Strobel in 1993 on taxol((R)) production by an endophytic fungus (Stierle et al., 1993), it is possible that a number of the agents now used as leads to treatments of diseases in man, are not produced by the plant or invertebrate host from which they were first isolated and identified. They are probably the product of a microbe in, on or around the macroorganism. At times there is an intricate "dance" between a precursor produced by a microbe, and interactions within the macroorganism, or in certain cases, a fungus, that ends up with the production of a novel agent that has potential as a treatment for a human disease. This report will give examples from insects, plants, and marine invertebrates.

No MeSH data available.


Compounds from Epiphytic and “Endophytic” Microbes.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4440917&req=5

Figure 3: Compounds from Epiphytic and “Endophytic” Microbes.

Mentions: For many years, maytansine (Figure 3; 18) and congeners were thought to be exclusively plant-derived secondary metabolites. Maytansine was first reported by Kupchan et al. (1972) isolated in very low yield from Maytenus ovatus collected in Ethiopia, and later isolated from M. buchananii and Putterlickia verrucosa. The compound also exhibited anti-parasitic and antimicrobial activity, and based on maytansine exhibiting potent cytotoxic activity against human KB cells, as well as several other cancer cell lines, researchers became interested in using this pharmacophore for the treatment of cancer. Though total syntheses were reported by the Meyers (Meyers and Shaw, 1974) and Corey research groups (Corey et al., 1980), these syntheses were multi-step, time- and labor-intensive, and impractical for large-scale synthesis for clinical trials, so large-scale extraction processes were used to obtain enough material for clinical trials.


Endophytic and epiphytic microbes as "sources" of bioactive agents.

Newman DJ, Cragg GM - Front Chem (2015)

Compounds from Epiphytic and “Endophytic” Microbes.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4440917&req=5

Figure 3: Compounds from Epiphytic and “Endophytic” Microbes.
Mentions: For many years, maytansine (Figure 3; 18) and congeners were thought to be exclusively plant-derived secondary metabolites. Maytansine was first reported by Kupchan et al. (1972) isolated in very low yield from Maytenus ovatus collected in Ethiopia, and later isolated from M. buchananii and Putterlickia verrucosa. The compound also exhibited anti-parasitic and antimicrobial activity, and based on maytansine exhibiting potent cytotoxic activity against human KB cells, as well as several other cancer cell lines, researchers became interested in using this pharmacophore for the treatment of cancer. Though total syntheses were reported by the Meyers (Meyers and Shaw, 1974) and Corey research groups (Corey et al., 1980), these syntheses were multi-step, time- and labor-intensive, and impractical for large-scale synthesis for clinical trials, so large-scale extraction processes were used to obtain enough material for clinical trials.

Bottom Line: Beginning with the report by Stierle and Strobel in 1993 on taxol((R)) production by an endophytic fungus (Stierle et al., 1993), it is possible that a number of the agents now used as leads to treatments of diseases in man, are not produced by the plant or invertebrate host from which they were first isolated and identified.They are probably the product of a microbe in, on or around the macroorganism.At times there is an intricate "dance" between a precursor produced by a microbe, and interactions within the macroorganism, or in certain cases, a fungus, that ends up with the production of a novel agent that has potential as a treatment for a human disease.

View Article: PubMed Central - PubMed

Affiliation: Retired, Wayne, PA, USA.

ABSTRACT
Beginning with the report by Stierle and Strobel in 1993 on taxol((R)) production by an endophytic fungus (Stierle et al., 1993), it is possible that a number of the agents now used as leads to treatments of diseases in man, are not produced by the plant or invertebrate host from which they were first isolated and identified. They are probably the product of a microbe in, on or around the macroorganism. At times there is an intricate "dance" between a precursor produced by a microbe, and interactions within the macroorganism, or in certain cases, a fungus, that ends up with the production of a novel agent that has potential as a treatment for a human disease. This report will give examples from insects, plants, and marine invertebrates.

No MeSH data available.