Limits...
Endophytic and epiphytic microbes as "sources" of bioactive agents.

Newman DJ, Cragg GM - Front Chem (2015)

Bottom Line: Beginning with the report by Stierle and Strobel in 1993 on taxol((R)) production by an endophytic fungus (Stierle et al., 1993), it is possible that a number of the agents now used as leads to treatments of diseases in man, are not produced by the plant or invertebrate host from which they were first isolated and identified.They are probably the product of a microbe in, on or around the macroorganism.At times there is an intricate "dance" between a precursor produced by a microbe, and interactions within the macroorganism, or in certain cases, a fungus, that ends up with the production of a novel agent that has potential as a treatment for a human disease.

View Article: PubMed Central - PubMed

Affiliation: Retired, Wayne, PA, USA.

ABSTRACT
Beginning with the report by Stierle and Strobel in 1993 on taxol((R)) production by an endophytic fungus (Stierle et al., 1993), it is possible that a number of the agents now used as leads to treatments of diseases in man, are not produced by the plant or invertebrate host from which they were first isolated and identified. They are probably the product of a microbe in, on or around the macroorganism. At times there is an intricate "dance" between a precursor produced by a microbe, and interactions within the macroorganism, or in certain cases, a fungus, that ends up with the production of a novel agent that has potential as a treatment for a human disease. This report will give examples from insects, plants, and marine invertebrates.

No MeSH data available.


Compounds from Marine-sourced Microbes.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4440917&req=5

Figure 1: Compounds from Marine-sourced Microbes.

Mentions: In the early 1980s, Frincke and Faulkner (1982) from the Scripps Institution of Oceanography in California investigating the compounds produced (better terms today might be “found in” or “isolated from”) by sponges in the Eastern Pacific off the West coast of California, isolated, and purified the compound known as renieramycin A (Figure 1; 1). Inspection of the structure of this molecule showed that the base structure closely resembled a series of known antitumor agents that had been isolated from fermentation of a terrestrial microbe, the saframycins A–C (Figure 1; 2–4). These compounds had been reported (Arai et al., 1977) from Streptomyces lavendulae initially as antibiotics, and later as having antitumor activity (Arai et al., 1980). Faulkner was not able to determine the antitumor activity of his isolate due to the very small amount of material isolated. Twenty years later, the Fusetani group in Tokyo (Nakao et al., 2004) reported the same material from an entirely different sponge, a Neopetrosia species using an antileishmanial assay rather than an antitumor assay; thus demonstrating that the same molecule may well have quite different activities dependent upon the bioassay used for following the isolation. It may be relevent at this point to make the point that most of the marine-derived materials reported in the literature were identified by bioactivity driven isolation techniques.


Endophytic and epiphytic microbes as "sources" of bioactive agents.

Newman DJ, Cragg GM - Front Chem (2015)

Compounds from Marine-sourced Microbes.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4440917&req=5

Figure 1: Compounds from Marine-sourced Microbes.
Mentions: In the early 1980s, Frincke and Faulkner (1982) from the Scripps Institution of Oceanography in California investigating the compounds produced (better terms today might be “found in” or “isolated from”) by sponges in the Eastern Pacific off the West coast of California, isolated, and purified the compound known as renieramycin A (Figure 1; 1). Inspection of the structure of this molecule showed that the base structure closely resembled a series of known antitumor agents that had been isolated from fermentation of a terrestrial microbe, the saframycins A–C (Figure 1; 2–4). These compounds had been reported (Arai et al., 1977) from Streptomyces lavendulae initially as antibiotics, and later as having antitumor activity (Arai et al., 1980). Faulkner was not able to determine the antitumor activity of his isolate due to the very small amount of material isolated. Twenty years later, the Fusetani group in Tokyo (Nakao et al., 2004) reported the same material from an entirely different sponge, a Neopetrosia species using an antileishmanial assay rather than an antitumor assay; thus demonstrating that the same molecule may well have quite different activities dependent upon the bioassay used for following the isolation. It may be relevent at this point to make the point that most of the marine-derived materials reported in the literature were identified by bioactivity driven isolation techniques.

Bottom Line: Beginning with the report by Stierle and Strobel in 1993 on taxol((R)) production by an endophytic fungus (Stierle et al., 1993), it is possible that a number of the agents now used as leads to treatments of diseases in man, are not produced by the plant or invertebrate host from which they were first isolated and identified.They are probably the product of a microbe in, on or around the macroorganism.At times there is an intricate "dance" between a precursor produced by a microbe, and interactions within the macroorganism, or in certain cases, a fungus, that ends up with the production of a novel agent that has potential as a treatment for a human disease.

View Article: PubMed Central - PubMed

Affiliation: Retired, Wayne, PA, USA.

ABSTRACT
Beginning with the report by Stierle and Strobel in 1993 on taxol((R)) production by an endophytic fungus (Stierle et al., 1993), it is possible that a number of the agents now used as leads to treatments of diseases in man, are not produced by the plant or invertebrate host from which they were first isolated and identified. They are probably the product of a microbe in, on or around the macroorganism. At times there is an intricate "dance" between a precursor produced by a microbe, and interactions within the macroorganism, or in certain cases, a fungus, that ends up with the production of a novel agent that has potential as a treatment for a human disease. This report will give examples from insects, plants, and marine invertebrates.

No MeSH data available.