Limits...
Functional dissection of synaptic circuits: in vivo patch-clamp recording in neuroscience.

Tao C, Zhang G, Xiong Y, Zhou Y - Front Neural Circuits (2015)

Bottom Line: With the development of in vivo patch-clamp recording, especially in vivo voltage-clamp recording, researchers can not only directly measure neuronal activity, such as spiking responses or membrane potential dynamics, but also quantify synaptic inputs from excitatory and inhibitory circuits in living animals.This approach enables researchers to directly unravel different synaptic components and to understand their underlying roles in particular brain functions.The key factors of a successful in vivo patch-clamp experiment and possible solutions based on references and our experiences were also discussed.

View Article: PubMed Central - PubMed

Affiliation: Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University Chongqing, China.

ABSTRACT
Neuronal activity is dominated by synaptic inputs from excitatory or inhibitory neural circuits. With the development of in vivo patch-clamp recording, especially in vivo voltage-clamp recording, researchers can not only directly measure neuronal activity, such as spiking responses or membrane potential dynamics, but also quantify synaptic inputs from excitatory and inhibitory circuits in living animals. This approach enables researchers to directly unravel different synaptic components and to understand their underlying roles in particular brain functions. Combining in vivo patch-clamp recording with other techniques, such as two-photon imaging or optogenetics, can provide even clearer functional dissection of the synaptic contributions of different neurons or nuclei. Here, we summarized current applications and recent research progress using the in vivo patch-clamp recording method and focused on its role in the functional dissection of different synaptic inputs. The key factors of a successful in vivo patch-clamp experiment and possible solutions based on references and our experiences were also discussed.

No MeSH data available.


Different modes of in vivo patch-clamp recording. (A) Representative in vivo patch-clamp setups for anesthetized, awaking and behaving animals. (B) Demonstration of blind patch and two-photon-guided patch. (C) Procedures and different recording modes of in vivo patch clamp (blind patch). When the pipette approaches a nearby cell, heartbeat-associated changes become notable in test pulses. Releasing positive pressure allows the pipette tip to form a loose seal or a giga seal for loose-patch recording or whole-cell recording, respectively. After giga seal formation, the cell membrane can then be broken for either current-clamp recording or voltage-clamp recording. (D) Two different methods for visually guided in vivo patch clamp: shadow patch and labeled-neuron-guided patch.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4440909&req=5

Figure 1: Different modes of in vivo patch-clamp recording. (A) Representative in vivo patch-clamp setups for anesthetized, awaking and behaving animals. (B) Demonstration of blind patch and two-photon-guided patch. (C) Procedures and different recording modes of in vivo patch clamp (blind patch). When the pipette approaches a nearby cell, heartbeat-associated changes become notable in test pulses. Releasing positive pressure allows the pipette tip to form a loose seal or a giga seal for loose-patch recording or whole-cell recording, respectively. After giga seal formation, the cell membrane can then be broken for either current-clamp recording or voltage-clamp recording. (D) Two different methods for visually guided in vivo patch clamp: shadow patch and labeled-neuron-guided patch.

Mentions: In vivo patch-clamp recording can be performed in both anesthetized and awake animals. In the anesthetized state, the animal’s heart rate and breathing is relatively stable and smooth. This helps to minimize pulsation and increases the system’s stability, which is critical for any in vivo recording. Meanwhile, many higher brain functions, such as cognition, can only be studied in animals that are awake or even free moving. Whether anesthesia should be performed is largely dependent on the scientific questions raised and the design of the experiment (Figure 1A).


Functional dissection of synaptic circuits: in vivo patch-clamp recording in neuroscience.

Tao C, Zhang G, Xiong Y, Zhou Y - Front Neural Circuits (2015)

Different modes of in vivo patch-clamp recording. (A) Representative in vivo patch-clamp setups for anesthetized, awaking and behaving animals. (B) Demonstration of blind patch and two-photon-guided patch. (C) Procedures and different recording modes of in vivo patch clamp (blind patch). When the pipette approaches a nearby cell, heartbeat-associated changes become notable in test pulses. Releasing positive pressure allows the pipette tip to form a loose seal or a giga seal for loose-patch recording or whole-cell recording, respectively. After giga seal formation, the cell membrane can then be broken for either current-clamp recording or voltage-clamp recording. (D) Two different methods for visually guided in vivo patch clamp: shadow patch and labeled-neuron-guided patch.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4440909&req=5

Figure 1: Different modes of in vivo patch-clamp recording. (A) Representative in vivo patch-clamp setups for anesthetized, awaking and behaving animals. (B) Demonstration of blind patch and two-photon-guided patch. (C) Procedures and different recording modes of in vivo patch clamp (blind patch). When the pipette approaches a nearby cell, heartbeat-associated changes become notable in test pulses. Releasing positive pressure allows the pipette tip to form a loose seal or a giga seal for loose-patch recording or whole-cell recording, respectively. After giga seal formation, the cell membrane can then be broken for either current-clamp recording or voltage-clamp recording. (D) Two different methods for visually guided in vivo patch clamp: shadow patch and labeled-neuron-guided patch.
Mentions: In vivo patch-clamp recording can be performed in both anesthetized and awake animals. In the anesthetized state, the animal’s heart rate and breathing is relatively stable and smooth. This helps to minimize pulsation and increases the system’s stability, which is critical for any in vivo recording. Meanwhile, many higher brain functions, such as cognition, can only be studied in animals that are awake or even free moving. Whether anesthesia should be performed is largely dependent on the scientific questions raised and the design of the experiment (Figure 1A).

Bottom Line: With the development of in vivo patch-clamp recording, especially in vivo voltage-clamp recording, researchers can not only directly measure neuronal activity, such as spiking responses or membrane potential dynamics, but also quantify synaptic inputs from excitatory and inhibitory circuits in living animals.This approach enables researchers to directly unravel different synaptic components and to understand their underlying roles in particular brain functions.The key factors of a successful in vivo patch-clamp experiment and possible solutions based on references and our experiences were also discussed.

View Article: PubMed Central - PubMed

Affiliation: Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University Chongqing, China.

ABSTRACT
Neuronal activity is dominated by synaptic inputs from excitatory or inhibitory neural circuits. With the development of in vivo patch-clamp recording, especially in vivo voltage-clamp recording, researchers can not only directly measure neuronal activity, such as spiking responses or membrane potential dynamics, but also quantify synaptic inputs from excitatory and inhibitory circuits in living animals. This approach enables researchers to directly unravel different synaptic components and to understand their underlying roles in particular brain functions. Combining in vivo patch-clamp recording with other techniques, such as two-photon imaging or optogenetics, can provide even clearer functional dissection of the synaptic contributions of different neurons or nuclei. Here, we summarized current applications and recent research progress using the in vivo patch-clamp recording method and focused on its role in the functional dissection of different synaptic inputs. The key factors of a successful in vivo patch-clamp experiment and possible solutions based on references and our experiences were also discussed.

No MeSH data available.