Limits...
Hypoxia pretreatment of bone marrow mesenchymal stem cells facilitates angiogenesis by improving the function of endothelial cells in diabetic rats with lower ischemia.

Liu J, Hao H, Xia L, Ti D, Huang H, Dong L, Tong C, Hou Q, Zhao Y, Liu H, Fu X, Han W - PLoS ONE (2015)

Bottom Line: Endothelial dysfunction induced by unordered metabolism results in vascular reconstruction challenges in diabetic lower limb ischemia (DLLI).CM-Dil-labeled tracer experiments indicated that the survival of BM-MSCs was significantly improved, with approximately 5% of the injected cells remaining alive at 14 days.The expression levels of VEGF-1α, MMP-9 and VEGF-R were significantly increased, and the expression of pAKT was up-regulated in ischemic muscle.

View Article: PubMed Central - PubMed

Affiliation: Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, Beijing, China.

ABSTRACT
Endothelial dysfunction induced by unordered metabolism results in vascular reconstruction challenges in diabetic lower limb ischemia (DLLI). Mesenchymal stem cells (MSCs) are multipotent secretory cells that are suitable for clinical DLLI treatment, but their use has been hampered by poor survival after injection. Hypoxia can significantly enhance the capacity of MSCs to secrete angiogenic factors. We investigated transient hypoxia pretreatment of MSCs to facilitate revascularization in DLLI. Rat bone marrow MSCs (BM-MSCs) were cultured at different oxygen concentrations for varying time periods. The results indicated that transient pretreatment (5% O2, 48 h) not only increased the expression of VEGF-1α, ANG, HIF-1α and MMP-9 in BM-MSCs as assessed by real-time RT-PCR, but also increased the expression of Bcl-2 as determined by western blotting. The transplantation of pretreated BM-MSCs into rats with DLLI demonstrated accelerated vascular reconstruction when assayed by angiography and immunohistochemistry. CM-Dil-labeled tracer experiments indicated that the survival of BM-MSCs was significantly improved, with approximately 5% of the injected cells remaining alive at 14 days. The expression levels of VEGF-1α, MMP-9 and VEGF-R were significantly increased, and the expression of pAKT was up-regulated in ischemic muscle. Double immunofluorescence studies confirmed that the pretreated BM-MSCs promoted the proliferation and inhibited the apoptosis of endothelial cells. In vitro, pretreated BM-MSCs increased the migratory and tube forming capacity of endothelial cells (ECs). Hypoxia pretreatment of BM-MSCs significantly improved angiogenesis in response to tissue ischemia by ameliorating endothelial cell dysfunction and is a promising therapeutic treatment for DLLI.

No MeSH data available.


Related in: MedlinePlus

Hypoxia pretreatment of BM-MSCs promoted angiogenesis in ischemic muscle, as evaluated by angiography.(A) We presented the block diagram of study for BM-MSCs transplanted to treat DLLI. (B) The model of DLLI was developed and confirmed by angiography. (C) Hypoxia pretreatment of BM-MSCs locally transplanted to ischemic muscle markedly enhanced the microvascular density, compared to the control group. (D) The average length of the capillaries was detected. n = 4. * indicates P<0.05 versus the 7 d control group. (E) Perfusion images of lower limb at 14 days postoperatively. The color scale of all images was analyzed by setting the lowest perfusion value to 0 and the highest perfusion value to 300. (F)Perfusion in the normoxia and control groups was lower than that in the hypoxia group (* indicates P<0.05).
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4440823&req=5

pone.0126715.g004: Hypoxia pretreatment of BM-MSCs promoted angiogenesis in ischemic muscle, as evaluated by angiography.(A) We presented the block diagram of study for BM-MSCs transplanted to treat DLLI. (B) The model of DLLI was developed and confirmed by angiography. (C) Hypoxia pretreatment of BM-MSCs locally transplanted to ischemic muscle markedly enhanced the microvascular density, compared to the control group. (D) The average length of the capillaries was detected. n = 4. * indicates P<0.05 versus the 7 d control group. (E) Perfusion images of lower limb at 14 days postoperatively. The color scale of all images was analyzed by setting the lowest perfusion value to 0 and the highest perfusion value to 300. (F)Perfusion in the normoxia and control groups was lower than that in the hypoxia group (* indicates P<0.05).

Mentions: The DLLI model, established by STZ-induced diabetic rats with ligation of the femoral artery, was confirmed by angiography (Fig 4A). Hypoxia-pretreated BM-MSCs were injected into ischemic muscle tissue along the artery with multiple local injection points, and normoxic BM-MSCs and saline were used in the control groups. Seven days after cell transplantation, angiography indicated that neovascularization was found at ischemic tissue in the hypoxia pretreatment group, and that the mean length of the capillary was greater than that of the control groups. At day 14, a renascent vascular network had been formed at the femoral artery break away site in the hypoxia-pretreated group (Fig 4B–4D). Laser Doppler perfusion imaging was performed 14 days postoperatively to detect the blood perfusion of the ischemia of lower extremities. Compared with the hypoxia group, perfusion was decreased in the normoxia and control groups (Fig 4E and 4F). In the process of cell therapy, body weight, blood glucose, and glycosylated hemoglobin (HbA1c) levels were measured, and the results showed insignificant differences in local transplantation in the BM-MSCs and control groups (Table 2).


Hypoxia pretreatment of bone marrow mesenchymal stem cells facilitates angiogenesis by improving the function of endothelial cells in diabetic rats with lower ischemia.

Liu J, Hao H, Xia L, Ti D, Huang H, Dong L, Tong C, Hou Q, Zhao Y, Liu H, Fu X, Han W - PLoS ONE (2015)

Hypoxia pretreatment of BM-MSCs promoted angiogenesis in ischemic muscle, as evaluated by angiography.(A) We presented the block diagram of study for BM-MSCs transplanted to treat DLLI. (B) The model of DLLI was developed and confirmed by angiography. (C) Hypoxia pretreatment of BM-MSCs locally transplanted to ischemic muscle markedly enhanced the microvascular density, compared to the control group. (D) The average length of the capillaries was detected. n = 4. * indicates P<0.05 versus the 7 d control group. (E) Perfusion images of lower limb at 14 days postoperatively. The color scale of all images was analyzed by setting the lowest perfusion value to 0 and the highest perfusion value to 300. (F)Perfusion in the normoxia and control groups was lower than that in the hypoxia group (* indicates P<0.05).
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4440823&req=5

pone.0126715.g004: Hypoxia pretreatment of BM-MSCs promoted angiogenesis in ischemic muscle, as evaluated by angiography.(A) We presented the block diagram of study for BM-MSCs transplanted to treat DLLI. (B) The model of DLLI was developed and confirmed by angiography. (C) Hypoxia pretreatment of BM-MSCs locally transplanted to ischemic muscle markedly enhanced the microvascular density, compared to the control group. (D) The average length of the capillaries was detected. n = 4. * indicates P<0.05 versus the 7 d control group. (E) Perfusion images of lower limb at 14 days postoperatively. The color scale of all images was analyzed by setting the lowest perfusion value to 0 and the highest perfusion value to 300. (F)Perfusion in the normoxia and control groups was lower than that in the hypoxia group (* indicates P<0.05).
Mentions: The DLLI model, established by STZ-induced diabetic rats with ligation of the femoral artery, was confirmed by angiography (Fig 4A). Hypoxia-pretreated BM-MSCs were injected into ischemic muscle tissue along the artery with multiple local injection points, and normoxic BM-MSCs and saline were used in the control groups. Seven days after cell transplantation, angiography indicated that neovascularization was found at ischemic tissue in the hypoxia pretreatment group, and that the mean length of the capillary was greater than that of the control groups. At day 14, a renascent vascular network had been formed at the femoral artery break away site in the hypoxia-pretreated group (Fig 4B–4D). Laser Doppler perfusion imaging was performed 14 days postoperatively to detect the blood perfusion of the ischemia of lower extremities. Compared with the hypoxia group, perfusion was decreased in the normoxia and control groups (Fig 4E and 4F). In the process of cell therapy, body weight, blood glucose, and glycosylated hemoglobin (HbA1c) levels were measured, and the results showed insignificant differences in local transplantation in the BM-MSCs and control groups (Table 2).

Bottom Line: Endothelial dysfunction induced by unordered metabolism results in vascular reconstruction challenges in diabetic lower limb ischemia (DLLI).CM-Dil-labeled tracer experiments indicated that the survival of BM-MSCs was significantly improved, with approximately 5% of the injected cells remaining alive at 14 days.The expression levels of VEGF-1α, MMP-9 and VEGF-R were significantly increased, and the expression of pAKT was up-regulated in ischemic muscle.

View Article: PubMed Central - PubMed

Affiliation: Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, Beijing, China.

ABSTRACT
Endothelial dysfunction induced by unordered metabolism results in vascular reconstruction challenges in diabetic lower limb ischemia (DLLI). Mesenchymal stem cells (MSCs) are multipotent secretory cells that are suitable for clinical DLLI treatment, but their use has been hampered by poor survival after injection. Hypoxia can significantly enhance the capacity of MSCs to secrete angiogenic factors. We investigated transient hypoxia pretreatment of MSCs to facilitate revascularization in DLLI. Rat bone marrow MSCs (BM-MSCs) were cultured at different oxygen concentrations for varying time periods. The results indicated that transient pretreatment (5% O2, 48 h) not only increased the expression of VEGF-1α, ANG, HIF-1α and MMP-9 in BM-MSCs as assessed by real-time RT-PCR, but also increased the expression of Bcl-2 as determined by western blotting. The transplantation of pretreated BM-MSCs into rats with DLLI demonstrated accelerated vascular reconstruction when assayed by angiography and immunohistochemistry. CM-Dil-labeled tracer experiments indicated that the survival of BM-MSCs was significantly improved, with approximately 5% of the injected cells remaining alive at 14 days. The expression levels of VEGF-1α, MMP-9 and VEGF-R were significantly increased, and the expression of pAKT was up-regulated in ischemic muscle. Double immunofluorescence studies confirmed that the pretreated BM-MSCs promoted the proliferation and inhibited the apoptosis of endothelial cells. In vitro, pretreated BM-MSCs increased the migratory and tube forming capacity of endothelial cells (ECs). Hypoxia pretreatment of BM-MSCs significantly improved angiogenesis in response to tissue ischemia by ameliorating endothelial cell dysfunction and is a promising therapeutic treatment for DLLI.

No MeSH data available.


Related in: MedlinePlus