Limits...
The filament sensor for near real-time detection of cytoskeletal fiber structures.

Eltzner B, Wollnik C, Gottschlich C, Huckemann S, Rehfeldt F - PLoS ONE (2015)

Bottom Line: Further, we provide a benchmark dataset of real cell images along with filaments manually marked by a human expert as well as simulated benchmark images.The FS clearly outperforms existing methods in terms of computational runtime and filament extraction accuracy.The implementation of the FS and the benchmark database are available as open source.

View Article: PubMed Central - PubMed

Affiliation: Institute for Mathematical Stochastics, Georg-August-University, 37077 Göttingen, Germany.

ABSTRACT
A reliable extraction of filament data from microscopic images is of high interest in the analysis of acto-myosin structures as early morphological markers in mechanically guided differentiation of human mesenchymal stem cells and the understanding of the underlying fiber arrangement processes. In this paper, we propose the filament sensor (FS), a fast and robust processing sequence which detects and records location, orientation, length, and width for each single filament of an image, and thus allows for the above described analysis. The extraction of these features has previously not been possible with existing methods. We evaluate the performance of the proposed FS in terms of accuracy and speed in comparison to three existing methods with respect to their limited output. Further, we provide a benchmark dataset of real cell images along with filaments manually marked by a human expert as well as simulated benchmark images. The FS clearly outperforms existing methods in terms of computational runtime and filament extraction accuracy. The implementation of the FS and the benchmark database are available as open source.

No MeSH data available.


Tracing results with false positives and missed filaments for a simulated cell.This illustration uses the simulated cell 05. Green pixels are false positives detected by the method, yellow are correctly identified pixels and red are missed pixels as in Fig 9.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4440737&req=5

pone.0126346.g010: Tracing results with false positives and missed filaments for a simulated cell.This illustration uses the simulated cell 05. Green pixels are false positives detected by the method, yellow are correctly identified pixels and red are missed pixels as in Fig 9.

Mentions: Like the FS, also eLoG and CID allow for visual display of filament pixels. Along with the ground truth we provide such images in Fig 9 for a real cell image as well as in Fig 10 for a simulated cell image.


The filament sensor for near real-time detection of cytoskeletal fiber structures.

Eltzner B, Wollnik C, Gottschlich C, Huckemann S, Rehfeldt F - PLoS ONE (2015)

Tracing results with false positives and missed filaments for a simulated cell.This illustration uses the simulated cell 05. Green pixels are false positives detected by the method, yellow are correctly identified pixels and red are missed pixels as in Fig 9.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4440737&req=5

pone.0126346.g010: Tracing results with false positives and missed filaments for a simulated cell.This illustration uses the simulated cell 05. Green pixels are false positives detected by the method, yellow are correctly identified pixels and red are missed pixels as in Fig 9.
Mentions: Like the FS, also eLoG and CID allow for visual display of filament pixels. Along with the ground truth we provide such images in Fig 9 for a real cell image as well as in Fig 10 for a simulated cell image.

Bottom Line: Further, we provide a benchmark dataset of real cell images along with filaments manually marked by a human expert as well as simulated benchmark images.The FS clearly outperforms existing methods in terms of computational runtime and filament extraction accuracy.The implementation of the FS and the benchmark database are available as open source.

View Article: PubMed Central - PubMed

Affiliation: Institute for Mathematical Stochastics, Georg-August-University, 37077 Göttingen, Germany.

ABSTRACT
A reliable extraction of filament data from microscopic images is of high interest in the analysis of acto-myosin structures as early morphological markers in mechanically guided differentiation of human mesenchymal stem cells and the understanding of the underlying fiber arrangement processes. In this paper, we propose the filament sensor (FS), a fast and robust processing sequence which detects and records location, orientation, length, and width for each single filament of an image, and thus allows for the above described analysis. The extraction of these features has previously not been possible with existing methods. We evaluate the performance of the proposed FS in terms of accuracy and speed in comparison to three existing methods with respect to their limited output. Further, we provide a benchmark dataset of real cell images along with filaments manually marked by a human expert as well as simulated benchmark images. The FS clearly outperforms existing methods in terms of computational runtime and filament extraction accuracy. The implementation of the FS and the benchmark database are available as open source.

No MeSH data available.