Limits...
Anodal tDCS over the Primary Motor Cortex Facilitates Long-Term Memory Formation Reflecting Use-Dependent Plasticity.

Rroji O, van Kuyck K, Nuttin B, Wenderoth N - PLoS ONE (2015)

Bottom Line: Our main result is that long term retention performance (i.e. 1 week after practice) was significantly better when practice was performed with anodal tDCS than with sham tDCS (p < 0.001).This effect was large (Cohen's d=1.01) and all but one subject followed the group trend.Our results support the notion that anodal tDCS facilitates synaptic plasticity mediated by an LTP-like mechanism, which is in accordance with previous research.

View Article: PubMed Central - PubMed

Affiliation: Department of Kinesiology, Research Center for Movement Control and Neuroplasticity, KU Leuven, Leuven, Belgium.

ABSTRACT
Previous research suggests that anodal transcranial direct current stimulation (tDCS) over the primary motor cortex (M1) modulates NMDA receptor dependent processes that mediate synaptic plasticity. Here we test this proposal by applying anodal versus sham tDCS while subjects practiced to flex the thumb as fast as possible (ballistic movements). Repetitive practice of this task has been shown to result in performance improvements that reflect use-dependent plasticity resulting from NMDA receptor mediated, long-term potentiation (LTP)-like processes. Using a double-blind within-subject cross-over design, subjects (n=14) participated either in an anodal or a sham tDCS session which were at least 3 months apart. Sham or anodal tDCS (1 mA) was applied for 20 min during motor practice and retention was tested 30 min, 24 hours and one week later. All subjects improved performance during each of the two sessions (p < 0.001) and learning gains were similar. Our main result is that long term retention performance (i.e. 1 week after practice) was significantly better when practice was performed with anodal tDCS than with sham tDCS (p < 0.001). This effect was large (Cohen's d=1.01) and all but one subject followed the group trend. Our data strongly suggest that anodal tDCS facilitates long-term memory formation reflecting use-dependent plasticity. Our results support the notion that anodal tDCS facilitates synaptic plasticity mediated by an LTP-like mechanism, which is in accordance with previous research.

No MeSH data available.


Related in: MedlinePlus

Stimulation effects.Performance improvements relative to the first training block for the anodal tDCS session (black squares) and the sham tDCS session (gray triangles). Training was performed while stimulation was applied (filled symbols), while retention tests at day 1 (RT-D1-1), day 2 (RT-D2-1…RT-D2-3) and 7 (RT-D7-1…RT-D7-3) were performed without stimulation (open symbols). * indicates blocks where LSD post hoc tests indicate significant differences of anodal tDCS versus sham stimulation (p < 0.001). Data are shown as M ± SEM.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4440644&req=5

pone.0127270.g003: Stimulation effects.Performance improvements relative to the first training block for the anodal tDCS session (black squares) and the sham tDCS session (gray triangles). Training was performed while stimulation was applied (filled symbols), while retention tests at day 1 (RT-D1-1), day 2 (RT-D2-1…RT-D2-3) and 7 (RT-D7-1…RT-D7-3) were performed without stimulation (open symbols). * indicates blocks where LSD post hoc tests indicate significant differences of anodal tDCS versus sham stimulation (p < 0.001). Data are shown as M ± SEM.

Mentions: Next we investigated whether training with anodal tDCS influenced performance gains or retention differently than training with sham tDCS. Performance improvements relative to the first practice block (train1) are shown in Fig 3. Learning occurred in both sessions (main effect of block: F(15,180) = 12.89, p < 0.0001) and differences in learning gains during training (solid symbols) were minor when compared between anodal tDCS and sham tDCS sessions (main effect of stimulation: F(1, 12) = 1.598, p = 0.230). However, during the retention tests (performed without stimulation), performance in the two sessions started to differ. RT performance following training with anodal tDCS was better than RT performance following training with sham tDCS, an effect that reached significance at RT-D7 (block x stimulation interaction: F(15, 180) = 3.21, p < 0.001).


Anodal tDCS over the Primary Motor Cortex Facilitates Long-Term Memory Formation Reflecting Use-Dependent Plasticity.

Rroji O, van Kuyck K, Nuttin B, Wenderoth N - PLoS ONE (2015)

Stimulation effects.Performance improvements relative to the first training block for the anodal tDCS session (black squares) and the sham tDCS session (gray triangles). Training was performed while stimulation was applied (filled symbols), while retention tests at day 1 (RT-D1-1), day 2 (RT-D2-1…RT-D2-3) and 7 (RT-D7-1…RT-D7-3) were performed without stimulation (open symbols). * indicates blocks where LSD post hoc tests indicate significant differences of anodal tDCS versus sham stimulation (p < 0.001). Data are shown as M ± SEM.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4440644&req=5

pone.0127270.g003: Stimulation effects.Performance improvements relative to the first training block for the anodal tDCS session (black squares) and the sham tDCS session (gray triangles). Training was performed while stimulation was applied (filled symbols), while retention tests at day 1 (RT-D1-1), day 2 (RT-D2-1…RT-D2-3) and 7 (RT-D7-1…RT-D7-3) were performed without stimulation (open symbols). * indicates blocks where LSD post hoc tests indicate significant differences of anodal tDCS versus sham stimulation (p < 0.001). Data are shown as M ± SEM.
Mentions: Next we investigated whether training with anodal tDCS influenced performance gains or retention differently than training with sham tDCS. Performance improvements relative to the first practice block (train1) are shown in Fig 3. Learning occurred in both sessions (main effect of block: F(15,180) = 12.89, p < 0.0001) and differences in learning gains during training (solid symbols) were minor when compared between anodal tDCS and sham tDCS sessions (main effect of stimulation: F(1, 12) = 1.598, p = 0.230). However, during the retention tests (performed without stimulation), performance in the two sessions started to differ. RT performance following training with anodal tDCS was better than RT performance following training with sham tDCS, an effect that reached significance at RT-D7 (block x stimulation interaction: F(15, 180) = 3.21, p < 0.001).

Bottom Line: Our main result is that long term retention performance (i.e. 1 week after practice) was significantly better when practice was performed with anodal tDCS than with sham tDCS (p < 0.001).This effect was large (Cohen's d=1.01) and all but one subject followed the group trend.Our results support the notion that anodal tDCS facilitates synaptic plasticity mediated by an LTP-like mechanism, which is in accordance with previous research.

View Article: PubMed Central - PubMed

Affiliation: Department of Kinesiology, Research Center for Movement Control and Neuroplasticity, KU Leuven, Leuven, Belgium.

ABSTRACT
Previous research suggests that anodal transcranial direct current stimulation (tDCS) over the primary motor cortex (M1) modulates NMDA receptor dependent processes that mediate synaptic plasticity. Here we test this proposal by applying anodal versus sham tDCS while subjects practiced to flex the thumb as fast as possible (ballistic movements). Repetitive practice of this task has been shown to result in performance improvements that reflect use-dependent plasticity resulting from NMDA receptor mediated, long-term potentiation (LTP)-like processes. Using a double-blind within-subject cross-over design, subjects (n=14) participated either in an anodal or a sham tDCS session which were at least 3 months apart. Sham or anodal tDCS (1 mA) was applied for 20 min during motor practice and retention was tested 30 min, 24 hours and one week later. All subjects improved performance during each of the two sessions (p < 0.001) and learning gains were similar. Our main result is that long term retention performance (i.e. 1 week after practice) was significantly better when practice was performed with anodal tDCS than with sham tDCS (p < 0.001). This effect was large (Cohen's d=1.01) and all but one subject followed the group trend. Our data strongly suggest that anodal tDCS facilitates long-term memory formation reflecting use-dependent plasticity. Our results support the notion that anodal tDCS facilitates synaptic plasticity mediated by an LTP-like mechanism, which is in accordance with previous research.

No MeSH data available.


Related in: MedlinePlus