Limits...
Anodal tDCS over the Primary Motor Cortex Facilitates Long-Term Memory Formation Reflecting Use-Dependent Plasticity.

Rroji O, van Kuyck K, Nuttin B, Wenderoth N - PLoS ONE (2015)

Bottom Line: Our main result is that long term retention performance (i.e. 1 week after practice) was significantly better when practice was performed with anodal tDCS than with sham tDCS (p < 0.001).This effect was large (Cohen's d=1.01) and all but one subject followed the group trend.Our results support the notion that anodal tDCS facilitates synaptic plasticity mediated by an LTP-like mechanism, which is in accordance with previous research.

View Article: PubMed Central - PubMed

Affiliation: Department of Kinesiology, Research Center for Movement Control and Neuroplasticity, KU Leuven, Leuven, Belgium.

ABSTRACT
Previous research suggests that anodal transcranial direct current stimulation (tDCS) over the primary motor cortex (M1) modulates NMDA receptor dependent processes that mediate synaptic plasticity. Here we test this proposal by applying anodal versus sham tDCS while subjects practiced to flex the thumb as fast as possible (ballistic movements). Repetitive practice of this task has been shown to result in performance improvements that reflect use-dependent plasticity resulting from NMDA receptor mediated, long-term potentiation (LTP)-like processes. Using a double-blind within-subject cross-over design, subjects (n=14) participated either in an anodal or a sham tDCS session which were at least 3 months apart. Sham or anodal tDCS (1 mA) was applied for 20 min during motor practice and retention was tested 30 min, 24 hours and one week later. All subjects improved performance during each of the two sessions (p < 0.001) and learning gains were similar. Our main result is that long term retention performance (i.e. 1 week after practice) was significantly better when practice was performed with anodal tDCS than with sham tDCS (p < 0.001). This effect was large (Cohen's d=1.01) and all but one subject followed the group trend. Our data strongly suggest that anodal tDCS facilitates long-term memory formation reflecting use-dependent plasticity. Our results support the notion that anodal tDCS facilitates synaptic plasticity mediated by an LTP-like mechanism, which is in accordance with previous research.

No MeSH data available.


Related in: MedlinePlus

Order effects.Peak velocity data of the practice blocks (train1…10) performed in session 1 (black squares) and session 2 (gray circles). Note that when data are collapsed across anodal tDCS and sham tDCS conditions peak velocity was generally higher in the second session, but the extent of improvement over the course of learning was similar. Data are shown as M ± SEM.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4440644&req=5

pone.0127270.g002: Order effects.Peak velocity data of the practice blocks (train1…10) performed in session 1 (black squares) and session 2 (gray circles). Note that when data are collapsed across anodal tDCS and sham tDCS conditions peak velocity was generally higher in the second session, but the extent of improvement over the course of learning was similar. Data are shown as M ± SEM.

Mentions: Training resulted in a reliable increase in thumb flexion peak velocity which was observed for each session (Fig 2; main effect of block F(16, 208) = 19.20, p < 0.0001; note that for each session data was collapsed across anodal tDCS and sham tDCS conditions). Not surprisingly, overall peak velocities were significantly higher in the second than the first session (main effect of session: F(1, 12) = 11.30, p < 0.005). Importantly, the learning gains (indicating that use-dependent plasticity took place) were similar across sessions (session x block interaction: F(16, 208) = 0.81, p = 0.675), i.e. we found no statistical evidence indicating that subjects learned more in the first than the second session (or vice versa).


Anodal tDCS over the Primary Motor Cortex Facilitates Long-Term Memory Formation Reflecting Use-Dependent Plasticity.

Rroji O, van Kuyck K, Nuttin B, Wenderoth N - PLoS ONE (2015)

Order effects.Peak velocity data of the practice blocks (train1…10) performed in session 1 (black squares) and session 2 (gray circles). Note that when data are collapsed across anodal tDCS and sham tDCS conditions peak velocity was generally higher in the second session, but the extent of improvement over the course of learning was similar. Data are shown as M ± SEM.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4440644&req=5

pone.0127270.g002: Order effects.Peak velocity data of the practice blocks (train1…10) performed in session 1 (black squares) and session 2 (gray circles). Note that when data are collapsed across anodal tDCS and sham tDCS conditions peak velocity was generally higher in the second session, but the extent of improvement over the course of learning was similar. Data are shown as M ± SEM.
Mentions: Training resulted in a reliable increase in thumb flexion peak velocity which was observed for each session (Fig 2; main effect of block F(16, 208) = 19.20, p < 0.0001; note that for each session data was collapsed across anodal tDCS and sham tDCS conditions). Not surprisingly, overall peak velocities were significantly higher in the second than the first session (main effect of session: F(1, 12) = 11.30, p < 0.005). Importantly, the learning gains (indicating that use-dependent plasticity took place) were similar across sessions (session x block interaction: F(16, 208) = 0.81, p = 0.675), i.e. we found no statistical evidence indicating that subjects learned more in the first than the second session (or vice versa).

Bottom Line: Our main result is that long term retention performance (i.e. 1 week after practice) was significantly better when practice was performed with anodal tDCS than with sham tDCS (p < 0.001).This effect was large (Cohen's d=1.01) and all but one subject followed the group trend.Our results support the notion that anodal tDCS facilitates synaptic plasticity mediated by an LTP-like mechanism, which is in accordance with previous research.

View Article: PubMed Central - PubMed

Affiliation: Department of Kinesiology, Research Center for Movement Control and Neuroplasticity, KU Leuven, Leuven, Belgium.

ABSTRACT
Previous research suggests that anodal transcranial direct current stimulation (tDCS) over the primary motor cortex (M1) modulates NMDA receptor dependent processes that mediate synaptic plasticity. Here we test this proposal by applying anodal versus sham tDCS while subjects practiced to flex the thumb as fast as possible (ballistic movements). Repetitive practice of this task has been shown to result in performance improvements that reflect use-dependent plasticity resulting from NMDA receptor mediated, long-term potentiation (LTP)-like processes. Using a double-blind within-subject cross-over design, subjects (n=14) participated either in an anodal or a sham tDCS session which were at least 3 months apart. Sham or anodal tDCS (1 mA) was applied for 20 min during motor practice and retention was tested 30 min, 24 hours and one week later. All subjects improved performance during each of the two sessions (p < 0.001) and learning gains were similar. Our main result is that long term retention performance (i.e. 1 week after practice) was significantly better when practice was performed with anodal tDCS than with sham tDCS (p < 0.001). This effect was large (Cohen's d=1.01) and all but one subject followed the group trend. Our data strongly suggest that anodal tDCS facilitates long-term memory formation reflecting use-dependent plasticity. Our results support the notion that anodal tDCS facilitates synaptic plasticity mediated by an LTP-like mechanism, which is in accordance with previous research.

No MeSH data available.


Related in: MedlinePlus