Limits...
Response-metrics for acute lung inflammation pattern by cobalt-based nanoparticles.

Jeong J, Han Y, Poland CA, Cho WS - Part Fibre Toxicol (2015)

Bottom Line: The Co3O4 and CoO NPs showed about 11.46% and 92.65% solubility in ALF, respectively.Instillation of Co3O4 NPs produced neutrophilic inflammation, but CoO NPs induced eosinophilic inflammation.Instillation of CoCl2 showed a similar type and magnitude of inflammation as CoO NPs.

View Article: PubMed Central - PubMed

Affiliation: Lab of Toxicology, Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, 840 Hadan-2dong, Saha-gu, Busan, 604-714, Republic of Korea. dudwlwjd@naver.com.

ABSTRACT

Background: Although the surface area metric has been proposed as a possible dose-metric for nanoparticles (NPs), it is limited to low-solubility NPs and the dose-metric for high-solubility NPs is poorly understood. In this study, we aimed to assess the appropriate dose-metric or response-metric for NPs using two cobalt (Co)-based NPs, cobalt monoxide (CoO) and cobalt oxide (Co3O4), which both show distinctive solubility, and determine the role of their soluble Co ions in inflammation.

Methods: We evaluated the physicochemical properties of NPs, including solubility in artificial lysosomal fluid (ALF, pH 5.5). Acute lung inflammogenicity was evaluated by bronchoalveolar lavage fluid analysis using the rat intratracheal instillation model. The appropriate response-metric was then determined by plotting several dose-metrics against parameters for lung inflammation. To investigate the effect of the soluble fraction of CoO NPs, the equivalent doses of Co ions from CoCl2 were instilled.

Results: The Co3O4 and CoO NPs showed about 11.46% and 92.65% solubility in ALF, respectively. Instillation of Co3O4 NPs produced neutrophilic inflammation, but CoO NPs induced eosinophilic inflammation. The number of eosinophils showed good correlation with the soluble Co ions dose from NPs (r2=0.987, p<0.001), while the number of neutrophils showed good correlation with the surface area dose of the biopersistent NPs (r2=0.876, p<0.001). Instillation of CoCl2 showed a similar type and magnitude of inflammation as CoO NPs.

Conclusions: In the Co-based NPs, the eosinophilic inflammation was produced by Co ions based on the ion metric, while the neutrophilic inflammation was developed based on the surface area metric of the biopersistent NPs.

No MeSH data available.


Related in: MedlinePlus

Transmission electron microscopy (TEM) image of (A) cobalt oxide (Co3O4) and (B) cobalt monoxide (CoO) nanoparticles (NPs). Both Co3O4 and CoO NPs showed spherical shape without porous structure
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4440510&req=5

Fig1: Transmission electron microscopy (TEM) image of (A) cobalt oxide (Co3O4) and (B) cobalt monoxide (CoO) nanoparticles (NPs). Both Co3O4 and CoO NPs showed spherical shape without porous structure

Mentions: The physicochemical properties of NPs are presented in Table 1. The average size of Co3O4 and CoO NPs measured by transmission electron microscopy (TEM) were 20.2 and 65.4 nm, respectively. TEM images showed that both NPs were spherical without porous structure (Fig. 1). The hydrodynamic size of NPs showed that both NPs showed a “hard agglomerates” in both distilled water (DW) and phosphate-buffered saline (PBS). Co3O4 NPs were less agglomerated than CoO NPs when dispersed in DW, while both NPs showed similar size range about 450 nm when dispersed in PBS (Table 1). Polydispersity showed that Co3O4 NPs were more homogenous than CoO NPs. The zeta potentials of both NPs were positive in DW but negative in PBS, which may be due to the neutral pH of PBS. Incubation of Co3O4 and CoO NPs in artificial lysosomal fluid (ALF) showed 11.46 % and 92.65 % solubility, respectively. Solubility of NPs in PBS was minimal at 0.02 % and 4.12 % for Co3O4 and CoO NPs, respectively. Both NPs showed no endotoxin contamination.Table 1


Response-metrics for acute lung inflammation pattern by cobalt-based nanoparticles.

Jeong J, Han Y, Poland CA, Cho WS - Part Fibre Toxicol (2015)

Transmission electron microscopy (TEM) image of (A) cobalt oxide (Co3O4) and (B) cobalt monoxide (CoO) nanoparticles (NPs). Both Co3O4 and CoO NPs showed spherical shape without porous structure
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4440510&req=5

Fig1: Transmission electron microscopy (TEM) image of (A) cobalt oxide (Co3O4) and (B) cobalt monoxide (CoO) nanoparticles (NPs). Both Co3O4 and CoO NPs showed spherical shape without porous structure
Mentions: The physicochemical properties of NPs are presented in Table 1. The average size of Co3O4 and CoO NPs measured by transmission electron microscopy (TEM) were 20.2 and 65.4 nm, respectively. TEM images showed that both NPs were spherical without porous structure (Fig. 1). The hydrodynamic size of NPs showed that both NPs showed a “hard agglomerates” in both distilled water (DW) and phosphate-buffered saline (PBS). Co3O4 NPs were less agglomerated than CoO NPs when dispersed in DW, while both NPs showed similar size range about 450 nm when dispersed in PBS (Table 1). Polydispersity showed that Co3O4 NPs were more homogenous than CoO NPs. The zeta potentials of both NPs were positive in DW but negative in PBS, which may be due to the neutral pH of PBS. Incubation of Co3O4 and CoO NPs in artificial lysosomal fluid (ALF) showed 11.46 % and 92.65 % solubility, respectively. Solubility of NPs in PBS was minimal at 0.02 % and 4.12 % for Co3O4 and CoO NPs, respectively. Both NPs showed no endotoxin contamination.Table 1

Bottom Line: The Co3O4 and CoO NPs showed about 11.46% and 92.65% solubility in ALF, respectively.Instillation of Co3O4 NPs produced neutrophilic inflammation, but CoO NPs induced eosinophilic inflammation.Instillation of CoCl2 showed a similar type and magnitude of inflammation as CoO NPs.

View Article: PubMed Central - PubMed

Affiliation: Lab of Toxicology, Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, 840 Hadan-2dong, Saha-gu, Busan, 604-714, Republic of Korea. dudwlwjd@naver.com.

ABSTRACT

Background: Although the surface area metric has been proposed as a possible dose-metric for nanoparticles (NPs), it is limited to low-solubility NPs and the dose-metric for high-solubility NPs is poorly understood. In this study, we aimed to assess the appropriate dose-metric or response-metric for NPs using two cobalt (Co)-based NPs, cobalt monoxide (CoO) and cobalt oxide (Co3O4), which both show distinctive solubility, and determine the role of their soluble Co ions in inflammation.

Methods: We evaluated the physicochemical properties of NPs, including solubility in artificial lysosomal fluid (ALF, pH 5.5). Acute lung inflammogenicity was evaluated by bronchoalveolar lavage fluid analysis using the rat intratracheal instillation model. The appropriate response-metric was then determined by plotting several dose-metrics against parameters for lung inflammation. To investigate the effect of the soluble fraction of CoO NPs, the equivalent doses of Co ions from CoCl2 were instilled.

Results: The Co3O4 and CoO NPs showed about 11.46% and 92.65% solubility in ALF, respectively. Instillation of Co3O4 NPs produced neutrophilic inflammation, but CoO NPs induced eosinophilic inflammation. The number of eosinophils showed good correlation with the soluble Co ions dose from NPs (r2=0.987, p<0.001), while the number of neutrophils showed good correlation with the surface area dose of the biopersistent NPs (r2=0.876, p<0.001). Instillation of CoCl2 showed a similar type and magnitude of inflammation as CoO NPs.

Conclusions: In the Co-based NPs, the eosinophilic inflammation was produced by Co ions based on the ion metric, while the neutrophilic inflammation was developed based on the surface area metric of the biopersistent NPs.

No MeSH data available.


Related in: MedlinePlus