Limits...
House Fly (Musca domestica L.) Attraction to Insect Honeydew.

Hung KY, Michailides TJ, Millar JG, Wayadande A, Gerry AC - PLoS ONE (2015)

Bottom Line: House flies are of major concern as vectors of food-borne pathogens to food crops.House flies were attracted to the following plant-pest-honeydew combinations: citrus mealybug on squash fruit, pea aphid on faba bean plants, whitefly on navel orange and grapefruit leaves, and combined citrus mealybug and cottony cushion scale on mandarin orange leaves.House flies were attracted to odors from A. pullulans cultures but not to those of C. cladosporioides.

View Article: PubMed Central - PubMed

Affiliation: Department of Entomology, University of California Riverside, Riverside, California, United States of America.

ABSTRACT
House flies are of major concern as vectors of food-borne pathogens to food crops. House flies are common pests on cattle feedlots and dairies, where they develop in and feed on animal waste. By contacting animal waste, house flies can acquire human pathogenic bacteria such as Escherichia coli and Salmonella spp., in addition to other bacteria, viruses, or parasites that may infect humans and animals. The subsequent dispersal of house flies from animal facilities to nearby agricultural fields containing food crops may lead to pre-harvest food contamination with these pathogens. We hypothesized that odors from honeydew, the sugary excreta produced by sucking insects feeding on crops, or molds and fungi growing on honeydew, may attract house flies, thereby increasing the risk of food crop contamination. House fly attraction to honeydew-contaminated plant material was evaluated using a laboratory bioassay. House flies were attracted to the following plant-pest-honeydew combinations: citrus mealybug on squash fruit, pea aphid on faba bean plants, whitefly on navel orange and grapefruit leaves, and combined citrus mealybug and cottony cushion scale on mandarin orange leaves. House flies were not attracted to field-collected samples of lerp psyllids on eucalyptus plants or aphids on crepe myrtle leaves. Fungi associated with field-collected honeydews were isolated and identified for further study as possible emitters of volatiles attractive to house flies. Two fungal species, Aureobasidium pullulans and Cladosporium cladosporioides, were repeatedly isolated from field-collected honeydew samples. Both fungal species were grown in potato dextrose enrichment broth and house fly attraction to volatiles from these fungal cultures was evaluated. House flies were attracted to odors from A. pullulans cultures but not to those of C. cladosporioides. Identification of specific honeydew odors that are attractive to house flies could be valuable for the development of improved house fly baits for management of this pest species.

No MeSH data available.


Related in: MedlinePlus

A diagram of a cage bioassay set up.Beakers containing either honeydew and plant material or a control were placed about 10 cm apart in a 45 × 45 × 45 cm cage. Sticky traps (sticky surface down) placed above each beaker captured flies near the beaker’s opening.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4430494&req=5

pone.0124746.g001: A diagram of a cage bioassay set up.Beakers containing either honeydew and plant material or a control were placed about 10 cm apart in a 45 × 45 × 45 cm cage. Sticky traps (sticky surface down) placed above each beaker captured flies near the beaker’s opening.

Mentions: Bioassays were conducted in a room maintained at 25 ± 2°C, 40% RH, and 14L:10D photoperiod in the UC Riverside Insectary building. The ventilation system in the room provided a slight negative pressure with air pulled through a centrally positioned ceiling vent creating airflow throughout the room. Prior to initiating bioassays, the entire room was scrubbed with unscented soap and water, and floor drains were sealed to reduce outside odors. Eight screen-cages (45 × 45 × 45 cm, Product no. 1450D, BioQuip Products, Rancho Dominquez, CA, USA) were set up on wire shelving with a 57-watt incandescent bulb within an 20.3-cm aluminum reflector housing placed 25 cm above each cage to provide light that was evenly distributed across each cage. Each cage contained two 2-L glass beakers to hold test materials. Beakers were washed with micro90 detergent and rinsed thoroughly with deionized water to remove odors prior to use in bioassays. For each bioassay period, treatment and control materials were randomly assigned to a beaker position (left or right side of the cage) in cage #1, and the position of the treatment and control material was then alternated in cages #2–8 to minimize within-cage position effects. The beakers were placed approximately 10 cm apart from each other and covered with mesh netting held in place with a rubber band to prohibit fly access to material held within the beaker. White sticky cards (Pherocon 1C Liner, Trécé, Adair, OK, USA) were folded into a tent shape, with the sticky surface on the inside, and fixed above each beaker with a metal wire (Fig 1).


House Fly (Musca domestica L.) Attraction to Insect Honeydew.

Hung KY, Michailides TJ, Millar JG, Wayadande A, Gerry AC - PLoS ONE (2015)

A diagram of a cage bioassay set up.Beakers containing either honeydew and plant material or a control were placed about 10 cm apart in a 45 × 45 × 45 cm cage. Sticky traps (sticky surface down) placed above each beaker captured flies near the beaker’s opening.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4430494&req=5

pone.0124746.g001: A diagram of a cage bioassay set up.Beakers containing either honeydew and plant material or a control were placed about 10 cm apart in a 45 × 45 × 45 cm cage. Sticky traps (sticky surface down) placed above each beaker captured flies near the beaker’s opening.
Mentions: Bioassays were conducted in a room maintained at 25 ± 2°C, 40% RH, and 14L:10D photoperiod in the UC Riverside Insectary building. The ventilation system in the room provided a slight negative pressure with air pulled through a centrally positioned ceiling vent creating airflow throughout the room. Prior to initiating bioassays, the entire room was scrubbed with unscented soap and water, and floor drains were sealed to reduce outside odors. Eight screen-cages (45 × 45 × 45 cm, Product no. 1450D, BioQuip Products, Rancho Dominquez, CA, USA) were set up on wire shelving with a 57-watt incandescent bulb within an 20.3-cm aluminum reflector housing placed 25 cm above each cage to provide light that was evenly distributed across each cage. Each cage contained two 2-L glass beakers to hold test materials. Beakers were washed with micro90 detergent and rinsed thoroughly with deionized water to remove odors prior to use in bioassays. For each bioassay period, treatment and control materials were randomly assigned to a beaker position (left or right side of the cage) in cage #1, and the position of the treatment and control material was then alternated in cages #2–8 to minimize within-cage position effects. The beakers were placed approximately 10 cm apart from each other and covered with mesh netting held in place with a rubber band to prohibit fly access to material held within the beaker. White sticky cards (Pherocon 1C Liner, Trécé, Adair, OK, USA) were folded into a tent shape, with the sticky surface on the inside, and fixed above each beaker with a metal wire (Fig 1).

Bottom Line: House flies are of major concern as vectors of food-borne pathogens to food crops.House flies were attracted to the following plant-pest-honeydew combinations: citrus mealybug on squash fruit, pea aphid on faba bean plants, whitefly on navel orange and grapefruit leaves, and combined citrus mealybug and cottony cushion scale on mandarin orange leaves.House flies were attracted to odors from A. pullulans cultures but not to those of C. cladosporioides.

View Article: PubMed Central - PubMed

Affiliation: Department of Entomology, University of California Riverside, Riverside, California, United States of America.

ABSTRACT
House flies are of major concern as vectors of food-borne pathogens to food crops. House flies are common pests on cattle feedlots and dairies, where they develop in and feed on animal waste. By contacting animal waste, house flies can acquire human pathogenic bacteria such as Escherichia coli and Salmonella spp., in addition to other bacteria, viruses, or parasites that may infect humans and animals. The subsequent dispersal of house flies from animal facilities to nearby agricultural fields containing food crops may lead to pre-harvest food contamination with these pathogens. We hypothesized that odors from honeydew, the sugary excreta produced by sucking insects feeding on crops, or molds and fungi growing on honeydew, may attract house flies, thereby increasing the risk of food crop contamination. House fly attraction to honeydew-contaminated plant material was evaluated using a laboratory bioassay. House flies were attracted to the following plant-pest-honeydew combinations: citrus mealybug on squash fruit, pea aphid on faba bean plants, whitefly on navel orange and grapefruit leaves, and combined citrus mealybug and cottony cushion scale on mandarin orange leaves. House flies were not attracted to field-collected samples of lerp psyllids on eucalyptus plants or aphids on crepe myrtle leaves. Fungi associated with field-collected honeydews were isolated and identified for further study as possible emitters of volatiles attractive to house flies. Two fungal species, Aureobasidium pullulans and Cladosporium cladosporioides, were repeatedly isolated from field-collected honeydew samples. Both fungal species were grown in potato dextrose enrichment broth and house fly attraction to volatiles from these fungal cultures was evaluated. House flies were attracted to odors from A. pullulans cultures but not to those of C. cladosporioides. Identification of specific honeydew odors that are attractive to house flies could be valuable for the development of improved house fly baits for management of this pest species.

No MeSH data available.


Related in: MedlinePlus