Limits...
Pleistocene aridification cycles shaped the contemporary genetic architecture of Southern African baboons.

Sithaldeen R, Ackermann RR, Bishop JM - PLoS ONE (2015)

Bottom Line: Our analysis highlights a period of continuous population growth beginning in the Middle to Late Pleistocene in both the ursinus and the PG2 griseipes lineages.All three clades identified in the study then enter a state of declining population size (Nef) through to the Holocene; this is particularly marked in the last 20,000 years, most likely coincident with the Last Glacial Maximum.The pattern recovered here conforms to expectations based on the dynamic regional climate trends in southern Africa through the Pleistocene and provides further support for complex patterns of diversification in the region's biodiversity.

View Article: PubMed Central - PubMed

Affiliation: Department of Archaeology, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa.

ABSTRACT
Plio-Pleistocene environmental change influenced the evolutionary history of many animal lineages in Africa, highlighting key roles for both climate and tectonics in the evolution of Africa's faunal diversity. Here, we explore diversification in the southern African chacma baboon Papio ursinus sensu lato and reveal a dominant role for increasingly arid landscapes during past glacial cycles in shaping contemporary genetic structure. Recent work on baboons (Papio spp.) supports complex lineage structuring with a dominant pulse of diversification occurring 1-2Ma, and yet the link to palaeoenvironmental change remains largely untested. Phylogeographic reconstruction based on mitochondrial DNA sequence data supports a scenario where chacma baboon populations were likely restricted to refugia during periods of regional cooling and drying through the Late Pleistocene. The two lineages of chacma baboon, ursinus and griseipes, are strongly geographically structured, and demographic reconstruction together with spatial analysis of genetic variation point to possible climate-driven isolating events where baboons may have retreated to more optimum conditions during cooler, drier periods. Our analysis highlights a period of continuous population growth beginning in the Middle to Late Pleistocene in both the ursinus and the PG2 griseipes lineages. All three clades identified in the study then enter a state of declining population size (Nef) through to the Holocene; this is particularly marked in the last 20,000 years, most likely coincident with the Last Glacial Maximum. The pattern recovered here conforms to expectations based on the dynamic regional climate trends in southern Africa through the Pleistocene and provides further support for complex patterns of diversification in the region's biodiversity.

No MeSH data available.


Related in: MedlinePlus

Map of sampling localities across southern Africa.Circles indicate the sampling localities used in this study. Orange circles indicate the ursinus mitochondrial lineage, while blue circles indicate the griseipes mitochondrial lineage, following [33,43]. Areas where both lineages were sampled are indicated with both colours. The extent of the Kalahari sand geologic formation is denoted by the yellow line. The Great Escarpment of southern Africa is denoted by the white dashed line. The escarpment edges the central southern African plateau and is a major geological formation in Africa. Digital elevation model (DEM) created with data from the NASA Shuttle Radar Topography Mission; all data are available from public domain sources. Sample details, collection site co-ordinates and clade associations are reported in S1 Table. Numbers on the map follow S1 Table.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4430493&req=5

pone.0123207.g002: Map of sampling localities across southern Africa.Circles indicate the sampling localities used in this study. Orange circles indicate the ursinus mitochondrial lineage, while blue circles indicate the griseipes mitochondrial lineage, following [33,43]. Areas where both lineages were sampled are indicated with both colours. The extent of the Kalahari sand geologic formation is denoted by the yellow line. The Great Escarpment of southern Africa is denoted by the white dashed line. The escarpment edges the central southern African plateau and is a major geological formation in Africa. Digital elevation model (DEM) created with data from the NASA Shuttle Radar Topography Mission; all data are available from public domain sources. Sample details, collection site co-ordinates and clade associations are reported in S1 Table. Numbers on the map follow S1 Table.

Mentions: Fresh faecal material was collected from free-living baboons from 29 localities across southern Africa (Fig 2). Samples were collected directly into 96% ethanol and stored at -20°C. Total DNA was extracted using a QIAamp DNA Stool Kit (Qiagen) following the manufacturer’s instructions and stored at 4°C. High quality DNA was obtained for 135 individuals. Sample details are reported in S1 Table.


Pleistocene aridification cycles shaped the contemporary genetic architecture of Southern African baboons.

Sithaldeen R, Ackermann RR, Bishop JM - PLoS ONE (2015)

Map of sampling localities across southern Africa.Circles indicate the sampling localities used in this study. Orange circles indicate the ursinus mitochondrial lineage, while blue circles indicate the griseipes mitochondrial lineage, following [33,43]. Areas where both lineages were sampled are indicated with both colours. The extent of the Kalahari sand geologic formation is denoted by the yellow line. The Great Escarpment of southern Africa is denoted by the white dashed line. The escarpment edges the central southern African plateau and is a major geological formation in Africa. Digital elevation model (DEM) created with data from the NASA Shuttle Radar Topography Mission; all data are available from public domain sources. Sample details, collection site co-ordinates and clade associations are reported in S1 Table. Numbers on the map follow S1 Table.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4430493&req=5

pone.0123207.g002: Map of sampling localities across southern Africa.Circles indicate the sampling localities used in this study. Orange circles indicate the ursinus mitochondrial lineage, while blue circles indicate the griseipes mitochondrial lineage, following [33,43]. Areas where both lineages were sampled are indicated with both colours. The extent of the Kalahari sand geologic formation is denoted by the yellow line. The Great Escarpment of southern Africa is denoted by the white dashed line. The escarpment edges the central southern African plateau and is a major geological formation in Africa. Digital elevation model (DEM) created with data from the NASA Shuttle Radar Topography Mission; all data are available from public domain sources. Sample details, collection site co-ordinates and clade associations are reported in S1 Table. Numbers on the map follow S1 Table.
Mentions: Fresh faecal material was collected from free-living baboons from 29 localities across southern Africa (Fig 2). Samples were collected directly into 96% ethanol and stored at -20°C. Total DNA was extracted using a QIAamp DNA Stool Kit (Qiagen) following the manufacturer’s instructions and stored at 4°C. High quality DNA was obtained for 135 individuals. Sample details are reported in S1 Table.

Bottom Line: Our analysis highlights a period of continuous population growth beginning in the Middle to Late Pleistocene in both the ursinus and the PG2 griseipes lineages.All three clades identified in the study then enter a state of declining population size (Nef) through to the Holocene; this is particularly marked in the last 20,000 years, most likely coincident with the Last Glacial Maximum.The pattern recovered here conforms to expectations based on the dynamic regional climate trends in southern Africa through the Pleistocene and provides further support for complex patterns of diversification in the region's biodiversity.

View Article: PubMed Central - PubMed

Affiliation: Department of Archaeology, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa.

ABSTRACT
Plio-Pleistocene environmental change influenced the evolutionary history of many animal lineages in Africa, highlighting key roles for both climate and tectonics in the evolution of Africa's faunal diversity. Here, we explore diversification in the southern African chacma baboon Papio ursinus sensu lato and reveal a dominant role for increasingly arid landscapes during past glacial cycles in shaping contemporary genetic structure. Recent work on baboons (Papio spp.) supports complex lineage structuring with a dominant pulse of diversification occurring 1-2Ma, and yet the link to palaeoenvironmental change remains largely untested. Phylogeographic reconstruction based on mitochondrial DNA sequence data supports a scenario where chacma baboon populations were likely restricted to refugia during periods of regional cooling and drying through the Late Pleistocene. The two lineages of chacma baboon, ursinus and griseipes, are strongly geographically structured, and demographic reconstruction together with spatial analysis of genetic variation point to possible climate-driven isolating events where baboons may have retreated to more optimum conditions during cooler, drier periods. Our analysis highlights a period of continuous population growth beginning in the Middle to Late Pleistocene in both the ursinus and the PG2 griseipes lineages. All three clades identified in the study then enter a state of declining population size (Nef) through to the Holocene; this is particularly marked in the last 20,000 years, most likely coincident with the Last Glacial Maximum. The pattern recovered here conforms to expectations based on the dynamic regional climate trends in southern Africa through the Pleistocene and provides further support for complex patterns of diversification in the region's biodiversity.

No MeSH data available.


Related in: MedlinePlus