Limits...
Borna disease virus phosphoprotein impairs the developmental program controlling neurogenesis and reduces human GABAergic neurogenesis.

Scordel C, Huttin A, Cochet-Bernoin M, Szelechowski M, Poulet A, Richardson J, Benchoua A, Gonzalez-Dunia D, Eloit M, Coulpier M - PLoS Pathog. (2015)

Bottom Line: Using lentiviral vectors for expression of the bdv-p and bdv-x viral genes, we demonstrate that the phosphoprotein P, but not the X protein, diminishes human neurogenesis and, more particularly, GABAergic neurogenesis.We further reveal a decrease in pro-neuronal factors known to be involved in neuronal differentiation (ApoE, Noggin, TH and Scg10/Stathmin2), demonstrating that cellular dysfunction is associated with impairment of specific components of the molecular program that controls neurogenesis.Our findings thus provide the first evidence that a viral protein impairs GABAergic human neurogenesis, a process that is dysregulated in several neuropsychiatric disorders.

View Article: PubMed Central - PubMed

Affiliation: INRA, UMR 1161, Maisons-Alfort, France; ANSES, UMR Virologie, Maisons-Alfort, France; Université Paris-Est, Ecole Nationale Vétérinaire d'Alfort, UMR Virologie, Maisons-Alfort, France.

ABSTRACT
It is well established that persistent viral infection may impair cellular function of specialized cells without overt damage. This concept, when applied to neurotropic viruses, may help to understand certain neurologic and neuropsychiatric diseases. Borna disease virus (BDV) is an excellent example of a persistent virus that targets the brain, impairs neural functions without cell lysis, and ultimately results in neurobehavioral disturbances. Recently, we have shown that BDV infects human neural progenitor cells (hNPCs) and impairs neurogenesis, revealing a new mechanism by which BDV may interfere with brain function. Here, we sought to identify the viral proteins and molecular pathways that are involved. Using lentiviral vectors for expression of the bdv-p and bdv-x viral genes, we demonstrate that the phosphoprotein P, but not the X protein, diminishes human neurogenesis and, more particularly, GABAergic neurogenesis. We further reveal a decrease in pro-neuronal factors known to be involved in neuronal differentiation (ApoE, Noggin, TH and Scg10/Stathmin2), demonstrating that cellular dysfunction is associated with impairment of specific components of the molecular program that controls neurogenesis. Our findings thus provide the first evidence that a viral protein impairs GABAergic human neurogenesis, a process that is dysregulated in several neuropsychiatric disorders. They improve our understanding of the mechanisms by which a persistent virus may interfere with brain development and function in the adult.

No MeSH data available.


Related in: MedlinePlus

bdv-p alters the expression of ApoE and Noggin.bdv-p- and bdv-x-expressing-hNPCs and their matched NT controls were induced to differentiate for 0, 4 or 14 days before RNA and protein analyses. ApoE expression was measured by RT-qPCR at (A) day 4, (B) day 0 and (C) day 14. (D) Western blot analysis showing ApoE level. It was normalized to actin. Noggin expression was measured by RT-qPCR at (E) day 4, (F) day 0 and (G) day 14. The results are representative of 2 independent experiments performed in triplicate. Statistical analyses were performed using the Mann-Whitney test. ***, p < 0.001.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4414417&req=5

ppat.1004859.g009: bdv-p alters the expression of ApoE and Noggin.bdv-p- and bdv-x-expressing-hNPCs and their matched NT controls were induced to differentiate for 0, 4 or 14 days before RNA and protein analyses. ApoE expression was measured by RT-qPCR at (A) day 4, (B) day 0 and (C) day 14. (D) Western blot analysis showing ApoE level. It was normalized to actin. Noggin expression was measured by RT-qPCR at (E) day 4, (F) day 0 and (G) day 14. The results are representative of 2 independent experiments performed in triplicate. Statistical analyses were performed using the Mann-Whitney test. ***, p < 0.001.

Mentions: ApoE was the second most down-regulated gene (10-fold decrease) in bdv-p-expressing hNPCs. In a study by Li et al. [44], it was shown that invalidation of the ApoE gene was linked to decrease in noggin and to alteration in neurogenesis. As Noggin was also shown to be decreased in the PCR array (by a 3-fold factor, Fig 7 and Table 1), we sought to confirm the down-regulation of these two genes by RT-qPCR. Down-regulation of ApoE was clearly confirmed at day 4 of differentiation, as a 4.4-fold decrease was observed (Fig 9A, left). In contrast, as already shown for TH and Scg10/Stathmin2, there was no alteration in bdv-x-expressing hNPCs (Fig 9A, right). Also, similar to observations made for Scg10/Stathmin2, down-regulation of the ApoE gene occurred before the initiation of differentiation, at day 0 (Fig 9B), and was still observable at day 14 (Fig 9C). It was also further confirmed at the protein level (Fig 9D), with again, no alteration due to the X protein. Similar results were obtained for noggin as a 2.9-fold decrease occurred at day 4 and was observable at day 0 and day 14 of differentiation (Fig 9E, 9F and 9G).


Borna disease virus phosphoprotein impairs the developmental program controlling neurogenesis and reduces human GABAergic neurogenesis.

Scordel C, Huttin A, Cochet-Bernoin M, Szelechowski M, Poulet A, Richardson J, Benchoua A, Gonzalez-Dunia D, Eloit M, Coulpier M - PLoS Pathog. (2015)

bdv-p alters the expression of ApoE and Noggin.bdv-p- and bdv-x-expressing-hNPCs and their matched NT controls were induced to differentiate for 0, 4 or 14 days before RNA and protein analyses. ApoE expression was measured by RT-qPCR at (A) day 4, (B) day 0 and (C) day 14. (D) Western blot analysis showing ApoE level. It was normalized to actin. Noggin expression was measured by RT-qPCR at (E) day 4, (F) day 0 and (G) day 14. The results are representative of 2 independent experiments performed in triplicate. Statistical analyses were performed using the Mann-Whitney test. ***, p < 0.001.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4414417&req=5

ppat.1004859.g009: bdv-p alters the expression of ApoE and Noggin.bdv-p- and bdv-x-expressing-hNPCs and their matched NT controls were induced to differentiate for 0, 4 or 14 days before RNA and protein analyses. ApoE expression was measured by RT-qPCR at (A) day 4, (B) day 0 and (C) day 14. (D) Western blot analysis showing ApoE level. It was normalized to actin. Noggin expression was measured by RT-qPCR at (E) day 4, (F) day 0 and (G) day 14. The results are representative of 2 independent experiments performed in triplicate. Statistical analyses were performed using the Mann-Whitney test. ***, p < 0.001.
Mentions: ApoE was the second most down-regulated gene (10-fold decrease) in bdv-p-expressing hNPCs. In a study by Li et al. [44], it was shown that invalidation of the ApoE gene was linked to decrease in noggin and to alteration in neurogenesis. As Noggin was also shown to be decreased in the PCR array (by a 3-fold factor, Fig 7 and Table 1), we sought to confirm the down-regulation of these two genes by RT-qPCR. Down-regulation of ApoE was clearly confirmed at day 4 of differentiation, as a 4.4-fold decrease was observed (Fig 9A, left). In contrast, as already shown for TH and Scg10/Stathmin2, there was no alteration in bdv-x-expressing hNPCs (Fig 9A, right). Also, similar to observations made for Scg10/Stathmin2, down-regulation of the ApoE gene occurred before the initiation of differentiation, at day 0 (Fig 9B), and was still observable at day 14 (Fig 9C). It was also further confirmed at the protein level (Fig 9D), with again, no alteration due to the X protein. Similar results were obtained for noggin as a 2.9-fold decrease occurred at day 4 and was observable at day 0 and day 14 of differentiation (Fig 9E, 9F and 9G).

Bottom Line: Using lentiviral vectors for expression of the bdv-p and bdv-x viral genes, we demonstrate that the phosphoprotein P, but not the X protein, diminishes human neurogenesis and, more particularly, GABAergic neurogenesis.We further reveal a decrease in pro-neuronal factors known to be involved in neuronal differentiation (ApoE, Noggin, TH and Scg10/Stathmin2), demonstrating that cellular dysfunction is associated with impairment of specific components of the molecular program that controls neurogenesis.Our findings thus provide the first evidence that a viral protein impairs GABAergic human neurogenesis, a process that is dysregulated in several neuropsychiatric disorders.

View Article: PubMed Central - PubMed

Affiliation: INRA, UMR 1161, Maisons-Alfort, France; ANSES, UMR Virologie, Maisons-Alfort, France; Université Paris-Est, Ecole Nationale Vétérinaire d'Alfort, UMR Virologie, Maisons-Alfort, France.

ABSTRACT
It is well established that persistent viral infection may impair cellular function of specialized cells without overt damage. This concept, when applied to neurotropic viruses, may help to understand certain neurologic and neuropsychiatric diseases. Borna disease virus (BDV) is an excellent example of a persistent virus that targets the brain, impairs neural functions without cell lysis, and ultimately results in neurobehavioral disturbances. Recently, we have shown that BDV infects human neural progenitor cells (hNPCs) and impairs neurogenesis, revealing a new mechanism by which BDV may interfere with brain function. Here, we sought to identify the viral proteins and molecular pathways that are involved. Using lentiviral vectors for expression of the bdv-p and bdv-x viral genes, we demonstrate that the phosphoprotein P, but not the X protein, diminishes human neurogenesis and, more particularly, GABAergic neurogenesis. We further reveal a decrease in pro-neuronal factors known to be involved in neuronal differentiation (ApoE, Noggin, TH and Scg10/Stathmin2), demonstrating that cellular dysfunction is associated with impairment of specific components of the molecular program that controls neurogenesis. Our findings thus provide the first evidence that a viral protein impairs GABAergic human neurogenesis, a process that is dysregulated in several neuropsychiatric disorders. They improve our understanding of the mechanisms by which a persistent virus may interfere with brain development and function in the adult.

No MeSH data available.


Related in: MedlinePlus