Limits...
Evidence for Patterns of Selective Urban Migration in the Greater Indus Valley (2600-1900 BC): A Lead and Strontium Isotope Mortuary Analysis.

Valentine B, Kamenov GD, Kenoyer JM, Shinde V, Mushrif-Tripathy V, Otarola-Castillo E, Krigbaum J - PLoS ONE (2015)

Bottom Line: However, isotopic data from human tooth enamel associated with Harappa Phase (2600-1900 BC) cemetery burials at Harappa (Pakistan) and Farmana (India) provide individual biogeochemical life histories of migration.Furthermore, mortuary populations formed over hundreds of years and composed almost entirely of first-generation immigrants suggest that inhumation was the final step in a process linking certain urban Indus communities to diverse hinterland groups.Additional multi disciplinary analyses are warranted to confirm inferred patterns of Indus mobility, but the available isotopic data suggest that efforts to classify and regulate human movement in the ancient Indus region likely helped structure socioeconomic integration across an ethnically diverse landscape.

View Article: PubMed Central - PubMed

Affiliation: Department of Anthropology, Dartmouth College, Hanover, NH, United States of America.

ABSTRACT
Just as modern nation-states struggle to manage the cultural and economic impacts of migration, ancient civilizations dealt with similar external pressures and set policies to regulate people's movements. In one of the earliest urban societies, the Indus Civilization, mechanisms linking city populations to hinterland groups remain enigmatic in the absence of written documents. However, isotopic data from human tooth enamel associated with Harappa Phase (2600-1900 BC) cemetery burials at Harappa (Pakistan) and Farmana (India) provide individual biogeochemical life histories of migration. Strontium and lead isotope ratios allow us to reinterpret the Indus tradition of cemetery inhumation as part of a specific and highly regulated institution of migration. Intra-individual isotopic shifts are consistent with immigration from resource-rich hinterlands during childhood. Furthermore, mortuary populations formed over hundreds of years and composed almost entirely of first-generation immigrants suggest that inhumation was the final step in a process linking certain urban Indus communities to diverse hinterland groups. Additional multi disciplinary analyses are warranted to confirm inferred patterns of Indus mobility, but the available isotopic data suggest that efforts to classify and regulate human movement in the ancient Indus region likely helped structure socioeconomic integration across an ethnically diverse landscape.

No MeSH data available.


Related in: MedlinePlus

Two hypothesized Sr mixing systems based on Harappa and Farmana human data.The less radiogenic mixing system (87Sr/86Sr < ~0.716) is likely associated with Catchment A in Fig 1. The more radiogenic mixing system (87Sr/86Sr > ~0.716) is likely associated with Catchment B.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4414352&req=5

pone.0123103.g006: Two hypothesized Sr mixing systems based on Harappa and Farmana human data.The less radiogenic mixing system (87Sr/86Sr < ~0.716) is likely associated with Catchment A in Fig 1. The more radiogenic mixing system (87Sr/86Sr > ~0.716) is likely associated with Catchment B.

Mentions: Regional geochemical assays constrain the provenience of non-local individuals. A plot of the reciprocal of Sr concentration against soluble 87Sr/86Sr reveals two mixing systems, suggesting that individuals lived in different biogeochemical catchments (Fig 6). The more radiogenic values from Harappa fall along the same mixing line as the Farmana dataset, whereas less radiogenic values (< 0.716) reflect contributions from distinct environmental sources including lower and upper end members with 87Sr/86Sr < 0.711 and > 0.716, respectively. Three end members control the Indus River Basin Sr budget [60], resulting in two convergent mixing systems that underlie the linear distributions of human data apparent in Fig 6. Carbonate weathering of the Western Fold Belt dominates the lower Indus and results in relatively low 87Sr/86Sr ratios (~0.711–0.712), but tributaries of the Punjab plains and the upper Indus channel drain distinct lithological units. Moderately radiogenic contributions (~0.712–0.716) from the Hindu Kush and Karakoram characterize upper Indus tributaries as far south as the Potwar Plateau. With the exception of the Jhelum River (~0.712–0.713), which flows adjacent to the Potwar Plateau, the Punjab tributaries drain highly radiogenic terrain (> 0.716) in the Greater and Lesser Himalayas. Therefore, Harappan individuals plotting on the less radiogenic mixing line (87Sr/86Sr < 0.716) (Fig 6) most likely originated to the northwest in the highlands and foothills stretching from the Potwar Plateau to the tributaries of the upper Indus (Catchment A). Indeed, most Harappan first molars plot along the low 87Sr/86Sr mixing line, although early-life residence was not restricted to the northwestern areas. Harappa and Farmana individuals with 87Sr/86Sr > 0.716 probably resided in the plains and foothills to the north and east where relatively radiogenic sediments of the Greater and Lesser Himalayas predominate (Catchment B).


Evidence for Patterns of Selective Urban Migration in the Greater Indus Valley (2600-1900 BC): A Lead and Strontium Isotope Mortuary Analysis.

Valentine B, Kamenov GD, Kenoyer JM, Shinde V, Mushrif-Tripathy V, Otarola-Castillo E, Krigbaum J - PLoS ONE (2015)

Two hypothesized Sr mixing systems based on Harappa and Farmana human data.The less radiogenic mixing system (87Sr/86Sr < ~0.716) is likely associated with Catchment A in Fig 1. The more radiogenic mixing system (87Sr/86Sr > ~0.716) is likely associated with Catchment B.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4414352&req=5

pone.0123103.g006: Two hypothesized Sr mixing systems based on Harappa and Farmana human data.The less radiogenic mixing system (87Sr/86Sr < ~0.716) is likely associated with Catchment A in Fig 1. The more radiogenic mixing system (87Sr/86Sr > ~0.716) is likely associated with Catchment B.
Mentions: Regional geochemical assays constrain the provenience of non-local individuals. A plot of the reciprocal of Sr concentration against soluble 87Sr/86Sr reveals two mixing systems, suggesting that individuals lived in different biogeochemical catchments (Fig 6). The more radiogenic values from Harappa fall along the same mixing line as the Farmana dataset, whereas less radiogenic values (< 0.716) reflect contributions from distinct environmental sources including lower and upper end members with 87Sr/86Sr < 0.711 and > 0.716, respectively. Three end members control the Indus River Basin Sr budget [60], resulting in two convergent mixing systems that underlie the linear distributions of human data apparent in Fig 6. Carbonate weathering of the Western Fold Belt dominates the lower Indus and results in relatively low 87Sr/86Sr ratios (~0.711–0.712), but tributaries of the Punjab plains and the upper Indus channel drain distinct lithological units. Moderately radiogenic contributions (~0.712–0.716) from the Hindu Kush and Karakoram characterize upper Indus tributaries as far south as the Potwar Plateau. With the exception of the Jhelum River (~0.712–0.713), which flows adjacent to the Potwar Plateau, the Punjab tributaries drain highly radiogenic terrain (> 0.716) in the Greater and Lesser Himalayas. Therefore, Harappan individuals plotting on the less radiogenic mixing line (87Sr/86Sr < 0.716) (Fig 6) most likely originated to the northwest in the highlands and foothills stretching from the Potwar Plateau to the tributaries of the upper Indus (Catchment A). Indeed, most Harappan first molars plot along the low 87Sr/86Sr mixing line, although early-life residence was not restricted to the northwestern areas. Harappa and Farmana individuals with 87Sr/86Sr > 0.716 probably resided in the plains and foothills to the north and east where relatively radiogenic sediments of the Greater and Lesser Himalayas predominate (Catchment B).

Bottom Line: However, isotopic data from human tooth enamel associated with Harappa Phase (2600-1900 BC) cemetery burials at Harappa (Pakistan) and Farmana (India) provide individual biogeochemical life histories of migration.Furthermore, mortuary populations formed over hundreds of years and composed almost entirely of first-generation immigrants suggest that inhumation was the final step in a process linking certain urban Indus communities to diverse hinterland groups.Additional multi disciplinary analyses are warranted to confirm inferred patterns of Indus mobility, but the available isotopic data suggest that efforts to classify and regulate human movement in the ancient Indus region likely helped structure socioeconomic integration across an ethnically diverse landscape.

View Article: PubMed Central - PubMed

Affiliation: Department of Anthropology, Dartmouth College, Hanover, NH, United States of America.

ABSTRACT
Just as modern nation-states struggle to manage the cultural and economic impacts of migration, ancient civilizations dealt with similar external pressures and set policies to regulate people's movements. In one of the earliest urban societies, the Indus Civilization, mechanisms linking city populations to hinterland groups remain enigmatic in the absence of written documents. However, isotopic data from human tooth enamel associated with Harappa Phase (2600-1900 BC) cemetery burials at Harappa (Pakistan) and Farmana (India) provide individual biogeochemical life histories of migration. Strontium and lead isotope ratios allow us to reinterpret the Indus tradition of cemetery inhumation as part of a specific and highly regulated institution of migration. Intra-individual isotopic shifts are consistent with immigration from resource-rich hinterlands during childhood. Furthermore, mortuary populations formed over hundreds of years and composed almost entirely of first-generation immigrants suggest that inhumation was the final step in a process linking certain urban Indus communities to diverse hinterland groups. Additional multi disciplinary analyses are warranted to confirm inferred patterns of Indus mobility, but the available isotopic data suggest that efforts to classify and regulate human movement in the ancient Indus region likely helped structure socioeconomic integration across an ethnically diverse landscape.

No MeSH data available.


Related in: MedlinePlus