Limits...
Which technique for radiation is most beneficial for patients with locally advanced cervical cancer? Intensity modulated proton therapy versus intensity modulated photon treatment, helical tomotherapy and volumetric arc therapy for primary radiation - an intraindividual comparison.

Marnitz S, Wlodarczyk W, Neumann O, Koehler C, Weihrauch M, Budach V, Cozzi L - Radiat Oncol (2015)

Bottom Line: Futhermore, the low dose bath (V10Gy) to the small bowel was reduced by 50% with IMPT in comparison to all photon techniques.All modern techniques (were proved to be dosimetrically adequate regarding coverage, conformity and homogeneity of the target.Protons offered the best sparing of small bowel and rectum and therefore could contribute to a significant reduction of acute and late toxicity in cervical cancer treatment.

View Article: PubMed Central - PubMed

Affiliation: Department of Radiation Oncology, Charité University Hospital, Berlin, Germany. simone.marnitz@charite.de.

ABSTRACT

Background: To compare highly sophisticated intensity-modulated radiotherapy (IMRT) delivered by either helical tomotherapy (HT), RapidArc (RA), IMRT with protons (IMPT) in patients with locally advanced cervical cancer.

Methods and materials: Twenty cervical cancer patients were irradiated using either conventional IMRT, VMAT or HT; ten received pelvic (PEL) and ten extended field irradiation (EFRT). The dose to the planning-target volume A (PTV_A: cervix, uterus, pelvic ± para-aortic lymph nodes) was 1.8/50.4 Gy. The SIB dose for the parametrium (PTV_B), was 2.12/59.36 Gy. MRI-guided brachytherapy was administered with 5 fractions up to 25 Gy. For EBRT, the lower target constraints were 95% of the prescribed dose in 95% of the target volume. The irradiated small bowel (SB) volumes were kept as low as possible. For every patient, target parameters as well as doses to the organs at risk (SB, bladder, rectum) were evaluated intra-individually for IMRT, HT, VMAT and IMPT.

Results: All techniques provided excellent target volume coverage, homogeneity, conformity. With IMPT, there was a significant reduction of the mean dose (Dmean) of the SB from 30.2 ± 4.0 Gy (IMRT); 27.6 ± 5.6 Gy (HT); 34.1 ± 7.0 (RA) to 18.6 ± 5.9 Gy (IMPT) for pelvic radiation and 26.3 ± 3.2 Gy (IMRT); 24.0 ± 4.1 (HT); 25.3 ± 3.7 (RA) to 13.8 ± 2.8 Gy (IMPT) for patients with EFRT, which corresponds to a reduction of 38-52% for the Dmean (SB). Futhermore, the low dose bath (V10Gy) to the small bowel was reduced by 50% with IMPT in comparison to all photon techniques. Furthermore, Dmean to the bladder and rectum was decresed by 7-9 Gy with IMPT in patents with pelvic radiation and EFRT.

Conclusion: All modern techniques (were proved to be dosimetrically adequate regarding coverage, conformity and homogeneity of the target. Protons offered the best sparing of small bowel and rectum and therefore could contribute to a significant reduction of acute and late toxicity in cervical cancer treatment.

No MeSH data available.


Related in: MedlinePlus

Example of Volume covered by 20 Gy (V20Gy, blue) for a patient with EFRT, HT vs IMPT.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4404108&req=5

Fig2: Example of Volume covered by 20 Gy (V20Gy, blue) for a patient with EFRT, HT vs IMPT.

Mentions: With IMPT, there was a significant reduction of the mean dose (Dmean) of the bowels from 30.2 ± 4.0 Gy (IMRT); 27.6 ± 5.6 Gy (HT); 34.1 ± 7.0 (VMAT) to 18.6 ± 5.9 Gy (IMPT) for pelvic radiation and 26.3 ± 3.2 Gy (IMRT); 24.0 ± 4.1 (HT); 25.3 ± 3.7 (VMAT) to 13.8 ± 2.8 Gy (IMPT) for patients with EFRT, which corresponds to a reduction of 38-52% for the Dmean (bowels), (examples are shown in Figures 2 and 3). Futhermore, the low dose bath (V10Gy) to the bowels was reduced by 50% with IMPT in comparison to all photon techniques. Looking at the findings in terms of absolute volumes, all techniques allowed to maintain the high dose irradiation of the bowels to acceptable levels. The maximum bowel involvement at 50 Gy was less than 190 cc (96% confidence level) for IMRT and much less for all other technques in the PEL group. In the EFRT group, this ranged from about 400 cc for IMRT and VMAT to 150 cc for IMPT with averages ranging from 280 cc to 90 cc.Figure 2


Which technique for radiation is most beneficial for patients with locally advanced cervical cancer? Intensity modulated proton therapy versus intensity modulated photon treatment, helical tomotherapy and volumetric arc therapy for primary radiation - an intraindividual comparison.

Marnitz S, Wlodarczyk W, Neumann O, Koehler C, Weihrauch M, Budach V, Cozzi L - Radiat Oncol (2015)

Example of Volume covered by 20 Gy (V20Gy, blue) for a patient with EFRT, HT vs IMPT.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4404108&req=5

Fig2: Example of Volume covered by 20 Gy (V20Gy, blue) for a patient with EFRT, HT vs IMPT.
Mentions: With IMPT, there was a significant reduction of the mean dose (Dmean) of the bowels from 30.2 ± 4.0 Gy (IMRT); 27.6 ± 5.6 Gy (HT); 34.1 ± 7.0 (VMAT) to 18.6 ± 5.9 Gy (IMPT) for pelvic radiation and 26.3 ± 3.2 Gy (IMRT); 24.0 ± 4.1 (HT); 25.3 ± 3.7 (VMAT) to 13.8 ± 2.8 Gy (IMPT) for patients with EFRT, which corresponds to a reduction of 38-52% for the Dmean (bowels), (examples are shown in Figures 2 and 3). Futhermore, the low dose bath (V10Gy) to the bowels was reduced by 50% with IMPT in comparison to all photon techniques. Looking at the findings in terms of absolute volumes, all techniques allowed to maintain the high dose irradiation of the bowels to acceptable levels. The maximum bowel involvement at 50 Gy was less than 190 cc (96% confidence level) for IMRT and much less for all other technques in the PEL group. In the EFRT group, this ranged from about 400 cc for IMRT and VMAT to 150 cc for IMPT with averages ranging from 280 cc to 90 cc.Figure 2

Bottom Line: Futhermore, the low dose bath (V10Gy) to the small bowel was reduced by 50% with IMPT in comparison to all photon techniques.All modern techniques (were proved to be dosimetrically adequate regarding coverage, conformity and homogeneity of the target.Protons offered the best sparing of small bowel and rectum and therefore could contribute to a significant reduction of acute and late toxicity in cervical cancer treatment.

View Article: PubMed Central - PubMed

Affiliation: Department of Radiation Oncology, Charité University Hospital, Berlin, Germany. simone.marnitz@charite.de.

ABSTRACT

Background: To compare highly sophisticated intensity-modulated radiotherapy (IMRT) delivered by either helical tomotherapy (HT), RapidArc (RA), IMRT with protons (IMPT) in patients with locally advanced cervical cancer.

Methods and materials: Twenty cervical cancer patients were irradiated using either conventional IMRT, VMAT or HT; ten received pelvic (PEL) and ten extended field irradiation (EFRT). The dose to the planning-target volume A (PTV_A: cervix, uterus, pelvic ± para-aortic lymph nodes) was 1.8/50.4 Gy. The SIB dose for the parametrium (PTV_B), was 2.12/59.36 Gy. MRI-guided brachytherapy was administered with 5 fractions up to 25 Gy. For EBRT, the lower target constraints were 95% of the prescribed dose in 95% of the target volume. The irradiated small bowel (SB) volumes were kept as low as possible. For every patient, target parameters as well as doses to the organs at risk (SB, bladder, rectum) were evaluated intra-individually for IMRT, HT, VMAT and IMPT.

Results: All techniques provided excellent target volume coverage, homogeneity, conformity. With IMPT, there was a significant reduction of the mean dose (Dmean) of the SB from 30.2 ± 4.0 Gy (IMRT); 27.6 ± 5.6 Gy (HT); 34.1 ± 7.0 (RA) to 18.6 ± 5.9 Gy (IMPT) for pelvic radiation and 26.3 ± 3.2 Gy (IMRT); 24.0 ± 4.1 (HT); 25.3 ± 3.7 (RA) to 13.8 ± 2.8 Gy (IMPT) for patients with EFRT, which corresponds to a reduction of 38-52% for the Dmean (SB). Futhermore, the low dose bath (V10Gy) to the small bowel was reduced by 50% with IMPT in comparison to all photon techniques. Furthermore, Dmean to the bladder and rectum was decresed by 7-9 Gy with IMPT in patents with pelvic radiation and EFRT.

Conclusion: All modern techniques (were proved to be dosimetrically adequate regarding coverage, conformity and homogeneity of the target. Protons offered the best sparing of small bowel and rectum and therefore could contribute to a significant reduction of acute and late toxicity in cervical cancer treatment.

No MeSH data available.


Related in: MedlinePlus