Limits...
Mongolian Almond (Prunus mongolica Maxim): The Morpho-Physiological, Biochemical and Transcriptomic Response to Drought Stress.

Wang J, Zheng R, Bai S, Gao X, Liu M, Yan W - PLoS ONE (2015)

Bottom Line: The photosynthesis response showed a decreasing tendency under drought stress, but the changes in the levels of hormones (auxins, cytokinins and abscisic acid) resulted in the closing of stomata and decreased cell enlargement and division; these changes were effective for promoting P. mongolica survival in Gobi Desert.We found that all of the plasma membrane intrinsic protein transcripts were down-regulated in the drought-stressed treatment, whereas drought did not affect the expression of nodulin intrinsic protein or small basic intrinsic protein transcripts in P. mongolica seedlings.Our results provide a significant contribution to the understanding of how P. mongolica responds to drought stress at the transcriptome level, which may help to elucidate molecular mechanisms associated with the drought response of almond plants.

View Article: PubMed Central - PubMed

Affiliation: College of Forestry, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China.

ABSTRACT
Prunus mongolica Maxim, which is widely established in the Gobi Desert, shows extreme tolerance to drought. However, there is a lack of available transcriptomic resources for this species related to its response to water deficiency. To investigate the mechanisms that allow P. mongolica to maintain growth in extremely arid environments, the response of P. mongolica seedlings to drought stress was analyzed using morphological, physiological, biochemical and high-throughput sequencing approaches. We generated 28,713,735 and 26,650,133 raw reads from no-stress control and drought-stressed P. mongolica seedlings, respectively. In total, we obtained 67,352 transcripts with an average length of 874.44 bp. Compared with the no-stress control, 3,365 transcripts were differentially expressed in the drought-stressed seedlings, including 55.75% (1,876 transcripts) up-regulated and 44.25% (1,489 transcripts) down-regulated transcripts. The photosynthesis response showed a decreasing tendency under drought stress, but the changes in the levels of hormones (auxins, cytokinins and abscisic acid) resulted in the closing of stomata and decreased cell enlargement and division; these changes were effective for promoting P. mongolica survival in Gobi Desert. Next, we analyzed the aquaporin and superoxide dismutase gene families due to their importance in plant resistance to drought stress. We found that all of the plasma membrane intrinsic protein transcripts were down-regulated in the drought-stressed treatment, whereas drought did not affect the expression of nodulin intrinsic protein or small basic intrinsic protein transcripts in P. mongolica seedlings. In addition, activation of iron superoxide dismutase transcription and enhanced transcription of manganese superoxide dismutase were observed in P. mongolica to promote tolerance of drought stress. This study identified drought response genes in P. mongolica seedlings. Our results provide a significant contribution to the understanding of how P. mongolica responds to drought stress at the transcriptome level, which may help to elucidate molecular mechanisms associated with the drought response of almond plants.

No MeSH data available.


Related in: MedlinePlus

The distribution of the top BLAST hits for the total P. mongolica transcripts.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4404049&req=5

pone.0124442.g003: The distribution of the top BLAST hits for the total P. mongolica transcripts.

Mentions: The general features of the transcriptome of P. mongolica may yield potential information to understand the drought adaption of this shrub. The results for the 67,352 transcripts when matched with 7 databases are presented in Table 1. In total, 55,126 (81.8%) transcripts showed matches with the Nr database, 32,716 (48.6%) with the SwissProt database, and 29,719 (44.1%) with the InterPro database. Of the 55,126 transcripts displaying the best hits in the Nr database, 41,656 (75.6%) transcripts corresponded to known plant’s protein sequences, with 28,069, 2,236, 5,205, 3,238, 1,109, 1,027 and 772 transcripts matching sequences from P. persica, other Prunus plants (P. nume, P. dulcis and P. avium), Vitis vinifera, Populus trichocarpa, Glycine max, Malus spp. and Medicago truncatula, respectively (Fig 3). This result indicated that P. mongolica’s transcripts have a high level (50.9%) of annotation similarity with peach. When adding the same genus plants, including P. nume, P. dulcis and P. avium, this level will arise to 55.0%. In addition, we note that only 28,927 protein annotations appeared in the high quality draft genome of peach [42], but 28,069 transcripts properly hits peach protein sequence, accounted for 97.0% of peach protein sequences has been annotated. This could show high accuracy of our assembly and could reflect the presence of high similarity between Mongolian almond and peach genomes. The high level of homology between peach and almond plants as well as other Prunus genomes has been also reported in the previous reports [20,43,44]. These similarities could indicate that the quality of our assembly is good enough to proceed to the next steps of analysis.


Mongolian Almond (Prunus mongolica Maxim): The Morpho-Physiological, Biochemical and Transcriptomic Response to Drought Stress.

Wang J, Zheng R, Bai S, Gao X, Liu M, Yan W - PLoS ONE (2015)

The distribution of the top BLAST hits for the total P. mongolica transcripts.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4404049&req=5

pone.0124442.g003: The distribution of the top BLAST hits for the total P. mongolica transcripts.
Mentions: The general features of the transcriptome of P. mongolica may yield potential information to understand the drought adaption of this shrub. The results for the 67,352 transcripts when matched with 7 databases are presented in Table 1. In total, 55,126 (81.8%) transcripts showed matches with the Nr database, 32,716 (48.6%) with the SwissProt database, and 29,719 (44.1%) with the InterPro database. Of the 55,126 transcripts displaying the best hits in the Nr database, 41,656 (75.6%) transcripts corresponded to known plant’s protein sequences, with 28,069, 2,236, 5,205, 3,238, 1,109, 1,027 and 772 transcripts matching sequences from P. persica, other Prunus plants (P. nume, P. dulcis and P. avium), Vitis vinifera, Populus trichocarpa, Glycine max, Malus spp. and Medicago truncatula, respectively (Fig 3). This result indicated that P. mongolica’s transcripts have a high level (50.9%) of annotation similarity with peach. When adding the same genus plants, including P. nume, P. dulcis and P. avium, this level will arise to 55.0%. In addition, we note that only 28,927 protein annotations appeared in the high quality draft genome of peach [42], but 28,069 transcripts properly hits peach protein sequence, accounted for 97.0% of peach protein sequences has been annotated. This could show high accuracy of our assembly and could reflect the presence of high similarity between Mongolian almond and peach genomes. The high level of homology between peach and almond plants as well as other Prunus genomes has been also reported in the previous reports [20,43,44]. These similarities could indicate that the quality of our assembly is good enough to proceed to the next steps of analysis.

Bottom Line: The photosynthesis response showed a decreasing tendency under drought stress, but the changes in the levels of hormones (auxins, cytokinins and abscisic acid) resulted in the closing of stomata and decreased cell enlargement and division; these changes were effective for promoting P. mongolica survival in Gobi Desert.We found that all of the plasma membrane intrinsic protein transcripts were down-regulated in the drought-stressed treatment, whereas drought did not affect the expression of nodulin intrinsic protein or small basic intrinsic protein transcripts in P. mongolica seedlings.Our results provide a significant contribution to the understanding of how P. mongolica responds to drought stress at the transcriptome level, which may help to elucidate molecular mechanisms associated with the drought response of almond plants.

View Article: PubMed Central - PubMed

Affiliation: College of Forestry, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China.

ABSTRACT
Prunus mongolica Maxim, which is widely established in the Gobi Desert, shows extreme tolerance to drought. However, there is a lack of available transcriptomic resources for this species related to its response to water deficiency. To investigate the mechanisms that allow P. mongolica to maintain growth in extremely arid environments, the response of P. mongolica seedlings to drought stress was analyzed using morphological, physiological, biochemical and high-throughput sequencing approaches. We generated 28,713,735 and 26,650,133 raw reads from no-stress control and drought-stressed P. mongolica seedlings, respectively. In total, we obtained 67,352 transcripts with an average length of 874.44 bp. Compared with the no-stress control, 3,365 transcripts were differentially expressed in the drought-stressed seedlings, including 55.75% (1,876 transcripts) up-regulated and 44.25% (1,489 transcripts) down-regulated transcripts. The photosynthesis response showed a decreasing tendency under drought stress, but the changes in the levels of hormones (auxins, cytokinins and abscisic acid) resulted in the closing of stomata and decreased cell enlargement and division; these changes were effective for promoting P. mongolica survival in Gobi Desert. Next, we analyzed the aquaporin and superoxide dismutase gene families due to their importance in plant resistance to drought stress. We found that all of the plasma membrane intrinsic protein transcripts were down-regulated in the drought-stressed treatment, whereas drought did not affect the expression of nodulin intrinsic protein or small basic intrinsic protein transcripts in P. mongolica seedlings. In addition, activation of iron superoxide dismutase transcription and enhanced transcription of manganese superoxide dismutase were observed in P. mongolica to promote tolerance of drought stress. This study identified drought response genes in P. mongolica seedlings. Our results provide a significant contribution to the understanding of how P. mongolica responds to drought stress at the transcriptome level, which may help to elucidate molecular mechanisms associated with the drought response of almond plants.

No MeSH data available.


Related in: MedlinePlus