Limits...
Spatio-temporal distribution of Aedes aegypti (Diptera: Culicidae) mitochondrial lineages in cities with distinct dengue incidence rates suggests complex population dynamics of the dengue vector in Colombia.

Jaimes-Dueñez J, Arboleda S, Triana-Chávez O, Gómez-Palacio A - PLoS Negl Trop Dis (2015)

Bottom Line: The phylogeographic analyses indicated that one group (associated with West African populations) was found in all the cities throughout the sampling while the second group (associated with East African populations) was found in all the samples from Bello and in only one sampling from Riohacha.Environmental factors such as the use of chemical insecticides showed a significant correlation with decreasing genetic diversity, indicating that environmental factors affect the population structure of Ae. aegypti across time and space in these cities.Our results suggest that two Ae. aegypti lineages are present in Colombia; one that is widespread and related to a West African conspecific, and a second that may have been recently introduced and is related to an East African conspecific.

View Article: PubMed Central - PubMed

Affiliation: Grupo Biología y Control de Enfermedades Infecciosas-BCEI, Universidad de Antioquia UdeA, Medellín, Colombia.

ABSTRACT

Background: Aedes aegypti is the primary vector of the four serotypes of dengue virus (DENV1-4), Chikungunya and yellow fever virus to humans. Previous population genetic studies have revealed a particular genetic structure among the vector populations in the Americas that suggests differences in the ability to transmit DENV. In Colombia, despite its high epidemiologic importance, the genetic population structure and the phylogeographic depiction of Ae. aegypti, as well as its relationship with the epidemiologic landscapes in cities with heterogeneous incidence levels, remains unknown. We conducted a spatiotemporal analysis with the aim of determining the genetic structure and phylogeography of Colombian populations of Ae. aegypti among cities with different eco-epidemiologic characteristics with regard to DENV.

Methods/findings: Mitochondrial cytochrome oxidase C subunit 1 (COI)--NADH dehydrogenase subunit 4 (ND4) genes were sequenced and analyzed from 341 adult mosquitoes collected during 2012 and 2013 in the Colombian cities of Bello, Riohacha and Villavicencio, which exhibit low, medium and high levels of incidence of DENV, respectively. The results demonstrated a low genetic differentiation over time and a high genetic structure between the cities due to changes in the frequency of two highly supported genetic groups. The phylogeographic analyses indicated that one group (associated with West African populations) was found in all the cities throughout the sampling while the second group (associated with East African populations) was found in all the samples from Bello and in only one sampling from Riohacha. Environmental factors such as the use of chemical insecticides showed a significant correlation with decreasing genetic diversity, indicating that environmental factors affect the population structure of Ae. aegypti across time and space in these cities.

Conclusions: Our results suggest that two Ae. aegypti lineages are present in Colombia; one that is widespread and related to a West African conspecific, and a second that may have been recently introduced and is related to an East African conspecific. The first lineage can be found in cities showing a high incidence of dengue fever and the use of chemical insecticides, whereas the second is present in cities showing a low incidence of dengue fever where the use of chemical insecticides is not constant. This study helps to improve our knowledge of the population structure of Ae. aegypti involved in the diversity of dengue fever epidemiology in Colombia.

Show MeSH

Related in: MedlinePlus

Nucleotide mismatch distribution of combined COI-ND4 genes in Ae. aegypti mosquitoes of Colombia.Histograms of mismatch distribution for (A) total haplotypes analyzed and haplotypes within each city of BE (B), RI (C) and VI (D). Color indicates collection origin: BE (green), RI (blue) and VI (red); the cross, bold crossbars and horizontal lines represent the samplings A, B, and C, respectively (see Table 1 for details).
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4403987&req=5

pntd.0003553.g003: Nucleotide mismatch distribution of combined COI-ND4 genes in Ae. aegypti mosquitoes of Colombia.Histograms of mismatch distribution for (A) total haplotypes analyzed and haplotypes within each city of BE (B), RI (C) and VI (D). Color indicates collection origin: BE (green), RI (blue) and VI (red); the cross, bold crossbars and horizontal lines represent the samplings A, B, and C, respectively (see Table 1 for details).

Mentions: The first two coordinates of the PCoA, harboring 87.2% of the genetic variability in the dataset, roughly indicated that the two groups of haplotypes are inferred (Fig. 2A), as supported by observed PC1-eigen values (Fig. 2B). A first group (group 1) was composed of most haplotypes from all locations and samplings, whereas a more dispersed group (group 2) of haplotypes from BE individuals were collected in all samplings, and a few haplotypes from RI individuals were collected only in the first sampling (sampling A details in Table 1) (Fig. 2A). Nucleotide differentiation between the suggested groups was clearly observed in the mismatch distribution where a bimodal-shaped curve for the entire dataset was observed (Fig. 3A). Furthermore, mismatch distribution performed in each of the cities showed a bimodal trend in BE that harbored haplotypes of insects collected during all samplings (Fig. 3B), whereas in RI and VI a unimodal curve was mostly observed (Fig. 3C, D). For the suggested groups, estimates of genetic diversity (Hd and π) were comparatively lower for group 1 than were observed within group 2 (Table 2). Moreover, only within group 1 were significant differences in π values observed between the cities, with the highest π values occurring in BE and RI compared with VI (Table 2).


Spatio-temporal distribution of Aedes aegypti (Diptera: Culicidae) mitochondrial lineages in cities with distinct dengue incidence rates suggests complex population dynamics of the dengue vector in Colombia.

Jaimes-Dueñez J, Arboleda S, Triana-Chávez O, Gómez-Palacio A - PLoS Negl Trop Dis (2015)

Nucleotide mismatch distribution of combined COI-ND4 genes in Ae. aegypti mosquitoes of Colombia.Histograms of mismatch distribution for (A) total haplotypes analyzed and haplotypes within each city of BE (B), RI (C) and VI (D). Color indicates collection origin: BE (green), RI (blue) and VI (red); the cross, bold crossbars and horizontal lines represent the samplings A, B, and C, respectively (see Table 1 for details).
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4403987&req=5

pntd.0003553.g003: Nucleotide mismatch distribution of combined COI-ND4 genes in Ae. aegypti mosquitoes of Colombia.Histograms of mismatch distribution for (A) total haplotypes analyzed and haplotypes within each city of BE (B), RI (C) and VI (D). Color indicates collection origin: BE (green), RI (blue) and VI (red); the cross, bold crossbars and horizontal lines represent the samplings A, B, and C, respectively (see Table 1 for details).
Mentions: The first two coordinates of the PCoA, harboring 87.2% of the genetic variability in the dataset, roughly indicated that the two groups of haplotypes are inferred (Fig. 2A), as supported by observed PC1-eigen values (Fig. 2B). A first group (group 1) was composed of most haplotypes from all locations and samplings, whereas a more dispersed group (group 2) of haplotypes from BE individuals were collected in all samplings, and a few haplotypes from RI individuals were collected only in the first sampling (sampling A details in Table 1) (Fig. 2A). Nucleotide differentiation between the suggested groups was clearly observed in the mismatch distribution where a bimodal-shaped curve for the entire dataset was observed (Fig. 3A). Furthermore, mismatch distribution performed in each of the cities showed a bimodal trend in BE that harbored haplotypes of insects collected during all samplings (Fig. 3B), whereas in RI and VI a unimodal curve was mostly observed (Fig. 3C, D). For the suggested groups, estimates of genetic diversity (Hd and π) were comparatively lower for group 1 than were observed within group 2 (Table 2). Moreover, only within group 1 were significant differences in π values observed between the cities, with the highest π values occurring in BE and RI compared with VI (Table 2).

Bottom Line: The phylogeographic analyses indicated that one group (associated with West African populations) was found in all the cities throughout the sampling while the second group (associated with East African populations) was found in all the samples from Bello and in only one sampling from Riohacha.Environmental factors such as the use of chemical insecticides showed a significant correlation with decreasing genetic diversity, indicating that environmental factors affect the population structure of Ae. aegypti across time and space in these cities.Our results suggest that two Ae. aegypti lineages are present in Colombia; one that is widespread and related to a West African conspecific, and a second that may have been recently introduced and is related to an East African conspecific.

View Article: PubMed Central - PubMed

Affiliation: Grupo Biología y Control de Enfermedades Infecciosas-BCEI, Universidad de Antioquia UdeA, Medellín, Colombia.

ABSTRACT

Background: Aedes aegypti is the primary vector of the four serotypes of dengue virus (DENV1-4), Chikungunya and yellow fever virus to humans. Previous population genetic studies have revealed a particular genetic structure among the vector populations in the Americas that suggests differences in the ability to transmit DENV. In Colombia, despite its high epidemiologic importance, the genetic population structure and the phylogeographic depiction of Ae. aegypti, as well as its relationship with the epidemiologic landscapes in cities with heterogeneous incidence levels, remains unknown. We conducted a spatiotemporal analysis with the aim of determining the genetic structure and phylogeography of Colombian populations of Ae. aegypti among cities with different eco-epidemiologic characteristics with regard to DENV.

Methods/findings: Mitochondrial cytochrome oxidase C subunit 1 (COI)--NADH dehydrogenase subunit 4 (ND4) genes were sequenced and analyzed from 341 adult mosquitoes collected during 2012 and 2013 in the Colombian cities of Bello, Riohacha and Villavicencio, which exhibit low, medium and high levels of incidence of DENV, respectively. The results demonstrated a low genetic differentiation over time and a high genetic structure between the cities due to changes in the frequency of two highly supported genetic groups. The phylogeographic analyses indicated that one group (associated with West African populations) was found in all the cities throughout the sampling while the second group (associated with East African populations) was found in all the samples from Bello and in only one sampling from Riohacha. Environmental factors such as the use of chemical insecticides showed a significant correlation with decreasing genetic diversity, indicating that environmental factors affect the population structure of Ae. aegypti across time and space in these cities.

Conclusions: Our results suggest that two Ae. aegypti lineages are present in Colombia; one that is widespread and related to a West African conspecific, and a second that may have been recently introduced and is related to an East African conspecific. The first lineage can be found in cities showing a high incidence of dengue fever and the use of chemical insecticides, whereas the second is present in cities showing a low incidence of dengue fever where the use of chemical insecticides is not constant. This study helps to improve our knowledge of the population structure of Ae. aegypti involved in the diversity of dengue fever epidemiology in Colombia.

Show MeSH
Related in: MedlinePlus