Limits...
Hyperglycaemia enhances nitric oxide production in diabetes: a study from South Indian patients.

Adela R, Nethi SK, Bagul PK, Barui AK, Mattapally S, Kuncha M, Patra CR, Reddy PN, Banerjee SK - PLoS ONE (2015)

Bottom Line: We found a significant (p<0.05) and dose-dependent increase in NO levels in HUVEC cells after 4 hours of high glucose exposure. eNOS and iNOS gene expression was increased in HUVEC cells after different concentrations and time periods of glucose treatment.We found significantly lower NO levels (83.5 μM (60.5-122.9)) in subjects suffering from diabetes since more than 5 years, compared to subjects (115.3 μM (75.2-127.1), p<0.001) with less than 5 years.In conclusion, high NO levels were observed in South Indian diabetic patients.

View Article: PubMed Central - PubMed

Affiliation: Division of Medicinal Chemistry and Pharmacology, Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, 500007, India.

ABSTRACT

Background: We have previously reported that increased glucose levels were associated with higher serum nitric oxide (NO) levels in fructose-fed insulin resistant rats. However, the relationship between hyperglycemia and serum NO level was not clear. Therefore, the present study was designed to find the association between hyperglycemia and serum NO levels in Type 2 diabetic (T2DM) patients and T2DM with cardiovascular complication.

Methods: Endothelial cells (HUVEC) were treated with of D-glucose (10-100mM), and NO levels and NOS gene expression was measured. Hyperglycaemia was induced in Sprague-Dawley rats, and serum NO levels were measured after 8 weeks. For clinical evaluation, five groups of patients were recruited: Control (CT, n=48), Type 2 diabetes (T2DM, n=26), T2DM with hypertension (DMHT, n=46), Coronary artery diseases (CAD, n=29) and T2DM with coronary artery diseases (DMCD, n=38). NO (nitrite + nitrate) levels were measured from human serum.

Results: We found a significant (p<0.05) and dose-dependent increase in NO levels in HUVEC cells after 4 hours of high glucose exposure. eNOS and iNOS gene expression was increased in HUVEC cells after different concentrations and time periods of glucose treatment. We also observed significant (149.1 ± 25 μM, p<0.01) increase in serum NO levels in hyperglycaemic rats compared to control (76.6 ± 13.2 μM). Serum NO level was significantly higher in T2DM (111.8 μM (81.7-122.4), p<0.001) and DMCD patients ((129.4 μM (121.2-143.5), p <0.001) but not in CAD patients (76.4 μM (70.5-87)), as compared to control (68.2 μM (56.4-82.3)). We found significantly lower NO levels (83.5 μM (60.5-122.9)) in subjects suffering from diabetes since more than 5 years, compared to subjects (115.3 μM (75.2-127.1), p<0.001) with less than 5 years.

Conclusion: In conclusion, high NO levels were observed in South Indian diabetic patients. Higher glucose levels in serum might be responsible for activation of endothelial cells to enhance NO levels.

No MeSH data available.


Related in: MedlinePlus

A. NO levels produced from HUVEC cells after 4hrs treatment of D-Glucose (10,50mM). Data were represented as ± SEM. * p<0.05, ** p<0.01 vs Control (CT). B. NO levels produced from HUVEC cells after 8hrs treatment of D-Glucose (10,50mM). Data were represented as mean ± SEM. * p<0.05, ** p<0.01, *** p< 0.001 vs Control (CT).
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4403926&req=5

pone.0125270.g003: A. NO levels produced from HUVEC cells after 4hrs treatment of D-Glucose (10,50mM). Data were represented as ± SEM. * p<0.05, ** p<0.01 vs Control (CT). B. NO levels produced from HUVEC cells after 8hrs treatment of D-Glucose (10,50mM). Data were represented as mean ± SEM. * p<0.05, ** p<0.01, *** p< 0.001 vs Control (CT).

Mentions: We measured the NO levels in HUVEC cells in response to different concentration of D-glucose treatments (10, 25, 50 and 100mM) at different time points (4- and 8 hrs) (S1 and S2 Figs). Our data demonstrated dose-dependent increase in NO production in HUVEC cells after 4 hrs of glucose treatment (10 mM and 50 mM) (Fig 3A). Interestingly, this dose-dependent increase of NO production was not observed after 8 hrs of glucose treatment (Fig 3B). There is a decline in NO production in cells treated with 50 mM glucose treatment compared to 10 mM in 8 hours treatment time. To confirm these findings, we performed DAF-2DA imaging of NO in HUVEC. DAF-2DA (4, 5-diaminofluorescein diacetate) is a cell-permeable fluorescent molecule which directly measures the intracellular NO levels [19]. The fluorescence images are represented in the Fig 4 which illustrate a dose-dependent enhanced DAF-2DA fluorescence in HUVEC treated with 10mM and 50 mM D-Glucose concentration for 4 hours and 8 hours, respectively. For both the experiments, we treated the HUVEC cells with VEGF as standard to find the effect of hyperglycemia on NO production.


Hyperglycaemia enhances nitric oxide production in diabetes: a study from South Indian patients.

Adela R, Nethi SK, Bagul PK, Barui AK, Mattapally S, Kuncha M, Patra CR, Reddy PN, Banerjee SK - PLoS ONE (2015)

A. NO levels produced from HUVEC cells after 4hrs treatment of D-Glucose (10,50mM). Data were represented as ± SEM. * p<0.05, ** p<0.01 vs Control (CT). B. NO levels produced from HUVEC cells after 8hrs treatment of D-Glucose (10,50mM). Data were represented as mean ± SEM. * p<0.05, ** p<0.01, *** p< 0.001 vs Control (CT).
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4403926&req=5

pone.0125270.g003: A. NO levels produced from HUVEC cells after 4hrs treatment of D-Glucose (10,50mM). Data were represented as ± SEM. * p<0.05, ** p<0.01 vs Control (CT). B. NO levels produced from HUVEC cells after 8hrs treatment of D-Glucose (10,50mM). Data were represented as mean ± SEM. * p<0.05, ** p<0.01, *** p< 0.001 vs Control (CT).
Mentions: We measured the NO levels in HUVEC cells in response to different concentration of D-glucose treatments (10, 25, 50 and 100mM) at different time points (4- and 8 hrs) (S1 and S2 Figs). Our data demonstrated dose-dependent increase in NO production in HUVEC cells after 4 hrs of glucose treatment (10 mM and 50 mM) (Fig 3A). Interestingly, this dose-dependent increase of NO production was not observed after 8 hrs of glucose treatment (Fig 3B). There is a decline in NO production in cells treated with 50 mM glucose treatment compared to 10 mM in 8 hours treatment time. To confirm these findings, we performed DAF-2DA imaging of NO in HUVEC. DAF-2DA (4, 5-diaminofluorescein diacetate) is a cell-permeable fluorescent molecule which directly measures the intracellular NO levels [19]. The fluorescence images are represented in the Fig 4 which illustrate a dose-dependent enhanced DAF-2DA fluorescence in HUVEC treated with 10mM and 50 mM D-Glucose concentration for 4 hours and 8 hours, respectively. For both the experiments, we treated the HUVEC cells with VEGF as standard to find the effect of hyperglycemia on NO production.

Bottom Line: We found a significant (p<0.05) and dose-dependent increase in NO levels in HUVEC cells after 4 hours of high glucose exposure. eNOS and iNOS gene expression was increased in HUVEC cells after different concentrations and time periods of glucose treatment.We found significantly lower NO levels (83.5 μM (60.5-122.9)) in subjects suffering from diabetes since more than 5 years, compared to subjects (115.3 μM (75.2-127.1), p<0.001) with less than 5 years.In conclusion, high NO levels were observed in South Indian diabetic patients.

View Article: PubMed Central - PubMed

Affiliation: Division of Medicinal Chemistry and Pharmacology, Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, 500007, India.

ABSTRACT

Background: We have previously reported that increased glucose levels were associated with higher serum nitric oxide (NO) levels in fructose-fed insulin resistant rats. However, the relationship between hyperglycemia and serum NO level was not clear. Therefore, the present study was designed to find the association between hyperglycemia and serum NO levels in Type 2 diabetic (T2DM) patients and T2DM with cardiovascular complication.

Methods: Endothelial cells (HUVEC) were treated with of D-glucose (10-100mM), and NO levels and NOS gene expression was measured. Hyperglycaemia was induced in Sprague-Dawley rats, and serum NO levels were measured after 8 weeks. For clinical evaluation, five groups of patients were recruited: Control (CT, n=48), Type 2 diabetes (T2DM, n=26), T2DM with hypertension (DMHT, n=46), Coronary artery diseases (CAD, n=29) and T2DM with coronary artery diseases (DMCD, n=38). NO (nitrite + nitrate) levels were measured from human serum.

Results: We found a significant (p<0.05) and dose-dependent increase in NO levels in HUVEC cells after 4 hours of high glucose exposure. eNOS and iNOS gene expression was increased in HUVEC cells after different concentrations and time periods of glucose treatment. We also observed significant (149.1 ± 25 μM, p<0.01) increase in serum NO levels in hyperglycaemic rats compared to control (76.6 ± 13.2 μM). Serum NO level was significantly higher in T2DM (111.8 μM (81.7-122.4), p<0.001) and DMCD patients ((129.4 μM (121.2-143.5), p <0.001) but not in CAD patients (76.4 μM (70.5-87)), as compared to control (68.2 μM (56.4-82.3)). We found significantly lower NO levels (83.5 μM (60.5-122.9)) in subjects suffering from diabetes since more than 5 years, compared to subjects (115.3 μM (75.2-127.1), p<0.001) with less than 5 years.

Conclusion: In conclusion, high NO levels were observed in South Indian diabetic patients. Higher glucose levels in serum might be responsible for activation of endothelial cells to enhance NO levels.

No MeSH data available.


Related in: MedlinePlus