Limits...
Temperature during early development has long-term effects on microRNA expression in Atlantic cod.

Bizuayehu TT, Johansen SD, Puvanendran V, Toften H, Babiak I - BMC Genomics (2015)

Bottom Line: The effect of temperature on methylation status of selected miRNA promoter regions was mostly inconclusive.Temperature elevation by several degrees during embryonic and larval developmental stages significantly alters the miRNA profile, both short-term and long-term.Our results suggest that a further rise in seas temperature might affect life history of Atlantic cod.

View Article: PubMed Central - PubMed

Affiliation: University of Nordland, Faculty of Biosciences and Aquaculture, Post Box 1490, 8049, Bodø, Norway. ttb@uin.no.

ABSTRACT

Background: Environmental temperature has serious implications in life cycle of aquatic ectotherms. Understanding the molecular mechanisms of temperature acclimation and adaptation of marine organisms is of the uttermost importance for ecology, fisheries, and aquaculture, as it allows modeling the effects of global warming on population dynamics. Regulatory molecules are major modulators of acclimation and adaptation; among them, microRNAs (miRNAs) are versatile and substantial contributors to regulatory networks of development and adaptive plasticity. However, their role in thermal plasticity is poorly known. We have asked whether the temperature and its shift during the early ontogeny (embryonic and larval development) affect the miRNA repertoire of Atlantic cod (Gadus morhua), and if thermal experience has long-term consequences in the miRNA profile.

Results: We characterized miRNA during different developmental stages and in juvenile tissues using next generation sequencing. We identified 389 putative miRNA precursor loci, 120 novel precursor miRNAs, and 281 mature miRNAs. Some miRNAs showed stage- or tissue-enriched expression and miRNAs, such as the miR-17 ~ 92 cluster, myomiRs (miR-206), neuromiRs (miR-9, miR-124), miR-130b, and miR-430 showed differential expression in different temperature regimes. Long-term effect of embryonic incubation temperature was revealed on expression of some miRNAs in juvenile pituitary (miR-449), gonad (miR-27c, miR-30c, and miR-200a), and liver (let-7 h, miR-7a, miR-22, miR-34c, miR-132a, miR-192, miR-221, miR-451, miR-2188, and miR-7550), but not in brain. Some of differentially expressed miRNAs in the liver were confirmed using LNA-based rt-qPCR. The effect of temperature on methylation status of selected miRNA promoter regions was mostly inconclusive.

Conclusions: Temperature elevation by several degrees during embryonic and larval developmental stages significantly alters the miRNA profile, both short-term and long-term. Our results suggest that a further rise in seas temperature might affect life history of Atlantic cod.

No MeSH data available.


Related in: MedlinePlus

Schematic representation of expression patterns of miRNAs during early development of Atlantic cod. Group I miRNAs are highly expressed before and during MZT and then decrease; Group II miRNAs are highly expressed during organogenesis; and Group III miRNAs are highly expressed during the transition from larval to adult forms. Only selected miRNAs are depicted; see Additional file 3 for the full set of miRNAs.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4403832&req=5

Fig1: Schematic representation of expression patterns of miRNAs during early development of Atlantic cod. Group I miRNAs are highly expressed before and during MZT and then decrease; Group II miRNAs are highly expressed during organogenesis; and Group III miRNAs are highly expressed during the transition from larval to adult forms. Only selected miRNAs are depicted; see Additional file 3 for the full set of miRNAs.

Mentions: Characterization of miRNAs during the development was performed using sequences obtained from LL group, which represented a default natural temperature conditions. Many miRNAs showed differential expression among investigated developmental stages. Clustering of miRNAs based on the expression pattern during the development resulted in 3 groups: miRNAs relatively highly expressed before and during maternal-zygotic-transition, MZT (Group I), during organogenesis (Group II), and during metamorphosis (Group III) (Figure 1 and Additional file 3).Figure 1


Temperature during early development has long-term effects on microRNA expression in Atlantic cod.

Bizuayehu TT, Johansen SD, Puvanendran V, Toften H, Babiak I - BMC Genomics (2015)

Schematic representation of expression patterns of miRNAs during early development of Atlantic cod. Group I miRNAs are highly expressed before and during MZT and then decrease; Group II miRNAs are highly expressed during organogenesis; and Group III miRNAs are highly expressed during the transition from larval to adult forms. Only selected miRNAs are depicted; see Additional file 3 for the full set of miRNAs.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4403832&req=5

Fig1: Schematic representation of expression patterns of miRNAs during early development of Atlantic cod. Group I miRNAs are highly expressed before and during MZT and then decrease; Group II miRNAs are highly expressed during organogenesis; and Group III miRNAs are highly expressed during the transition from larval to adult forms. Only selected miRNAs are depicted; see Additional file 3 for the full set of miRNAs.
Mentions: Characterization of miRNAs during the development was performed using sequences obtained from LL group, which represented a default natural temperature conditions. Many miRNAs showed differential expression among investigated developmental stages. Clustering of miRNAs based on the expression pattern during the development resulted in 3 groups: miRNAs relatively highly expressed before and during maternal-zygotic-transition, MZT (Group I), during organogenesis (Group II), and during metamorphosis (Group III) (Figure 1 and Additional file 3).Figure 1

Bottom Line: The effect of temperature on methylation status of selected miRNA promoter regions was mostly inconclusive.Temperature elevation by several degrees during embryonic and larval developmental stages significantly alters the miRNA profile, both short-term and long-term.Our results suggest that a further rise in seas temperature might affect life history of Atlantic cod.

View Article: PubMed Central - PubMed

Affiliation: University of Nordland, Faculty of Biosciences and Aquaculture, Post Box 1490, 8049, Bodø, Norway. ttb@uin.no.

ABSTRACT

Background: Environmental temperature has serious implications in life cycle of aquatic ectotherms. Understanding the molecular mechanisms of temperature acclimation and adaptation of marine organisms is of the uttermost importance for ecology, fisheries, and aquaculture, as it allows modeling the effects of global warming on population dynamics. Regulatory molecules are major modulators of acclimation and adaptation; among them, microRNAs (miRNAs) are versatile and substantial contributors to regulatory networks of development and adaptive plasticity. However, their role in thermal plasticity is poorly known. We have asked whether the temperature and its shift during the early ontogeny (embryonic and larval development) affect the miRNA repertoire of Atlantic cod (Gadus morhua), and if thermal experience has long-term consequences in the miRNA profile.

Results: We characterized miRNA during different developmental stages and in juvenile tissues using next generation sequencing. We identified 389 putative miRNA precursor loci, 120 novel precursor miRNAs, and 281 mature miRNAs. Some miRNAs showed stage- or tissue-enriched expression and miRNAs, such as the miR-17 ~ 92 cluster, myomiRs (miR-206), neuromiRs (miR-9, miR-124), miR-130b, and miR-430 showed differential expression in different temperature regimes. Long-term effect of embryonic incubation temperature was revealed on expression of some miRNAs in juvenile pituitary (miR-449), gonad (miR-27c, miR-30c, and miR-200a), and liver (let-7 h, miR-7a, miR-22, miR-34c, miR-132a, miR-192, miR-221, miR-451, miR-2188, and miR-7550), but not in brain. Some of differentially expressed miRNAs in the liver were confirmed using LNA-based rt-qPCR. The effect of temperature on methylation status of selected miRNA promoter regions was mostly inconclusive.

Conclusions: Temperature elevation by several degrees during embryonic and larval developmental stages significantly alters the miRNA profile, both short-term and long-term. Our results suggest that a further rise in seas temperature might affect life history of Atlantic cod.

No MeSH data available.


Related in: MedlinePlus