Limits...
Noninvasive diagnosis of chemotherapy induced liver injury by LiMAx test--two case reports and a review of the literature.

Bednarsch J, Jara M, Lock JF, Malinowski M, Pratschke J, Stockmann M - BMC Res Notes (2015)

Bottom Line: Chemotherapy-induced liver injury is a well-known phenomenon after neoadjuvant therapy of liver metastasis and contributes to postoperative morbidity and mortality.Both patients yielded a decrease from their initial liver function determined by LiMAx.This could be useful to optimize individual chemotherapy-free interval before liver surgery can be carried out safely.

View Article: PubMed Central - PubMed

Affiliation: Department of General, Visceral and Transplantation Surgery, Charité University Hospital, Augustenburger Platz 1, 13353, Berlin, Germany. jan.bednarsch@charite.de.

ABSTRACT

Background: Chemotherapy-induced liver injury is a well-known phenomenon after neoadjuvant therapy of liver metastasis and contributes to postoperative morbidity and mortality. Still there is no suitable test available to reliably determine functional impairment and hepatic regeneration after chemotherapy.

Case presentation: We report two cases of caucasian patients who underwent repeated liver function assessments using LiMAx (maximum liver function capacity), Indocyanine plasma disappearance rate and biochemical liver function parameters in the course of adjuvant oxaliplatin-based chemotherapy. Both patients yielded a decrease from their initial liver function determined by LiMAx. Liver regeneration assessed functional recovery within 4 weeks in case of mild functional impairment after cessation of chemotherapy or within 8 weeks in case of major functional deterioration. Indocyanine plasma disappearance rate and biochemical parameters remained stable or without a clear trend in case of minor functional impairment. This is the first report using a dynamic liver function test to evaluate the impact and recovery from chemotherapy associated liver injury.

Conclusions: The LiMAx test might be a sensitive tool to diagnose mild functional impairment after chemotherapy when standard liver function tests have remained within normal ranges and might be capable to assess the course of regeneration after chemotherapy. This could be useful to optimize individual chemotherapy-free interval before liver surgery can be carried out safely.

No MeSH data available.


Related in: MedlinePlus

Dynamic liver function assessment by LiMAx and Indocyanine green plasma disappearance rate in Case 1. Patients’ liver function capacity measured by LiMAx was reduced by 56% after chemotherapy and ICG-PDR by 14%. Despite showing a different course of regeneration, both dynamic liver function tests indicate functional recovery within 8 weeks after cessation of chemotherapy. pre-Chemo – prior to chemotherapy, post-Chemo – after cessation of chemotherapy, 4 weeks – 4 weeks after cessation of chemotherapy, 8 weeks – 8 weeks after cessation of chemotherapy.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4403679&req=5

Fig2: Dynamic liver function assessment by LiMAx and Indocyanine green plasma disappearance rate in Case 1. Patients’ liver function capacity measured by LiMAx was reduced by 56% after chemotherapy and ICG-PDR by 14%. Despite showing a different course of regeneration, both dynamic liver function tests indicate functional recovery within 8 weeks after cessation of chemotherapy. pre-Chemo – prior to chemotherapy, post-Chemo – after cessation of chemotherapy, 4 weeks – 4 weeks after cessation of chemotherapy, 8 weeks – 8 weeks after cessation of chemotherapy.

Mentions: Case 1 reports a 56-year-old male caucasian patient that received 8 cycles of XELOX chemotherapy substituting 5-FU for the oral drug Xeloda. The patient started XELOX chemotherapy with a LiMAx value of 463 μg/kg/h and showed a decrease of functional liver capacity by 56% to 204 μg/kg/h after withdrawal of chemotherapy. ICG-PDR also declined from physiological 19.3%/min prior to chemotherapy to 16.6%/min (Figure 2). In terms of regeneration LiMAx indicates a continuous course regaining liver function after a chemotherapy-free interval of 8 weeks. In contrast ICG-PDR persisted to decrease until 4 weeks after cessation of chemotherapy. However it also restored its value by week 8. Biochemistry showed a peak of serum bilirubin directly after chemotherapy and a temporary decrease in butyrylcholinesterase (BChE) until 8 weeks after withdrawal of XELOX (Table 1).Figure 2


Noninvasive diagnosis of chemotherapy induced liver injury by LiMAx test--two case reports and a review of the literature.

Bednarsch J, Jara M, Lock JF, Malinowski M, Pratschke J, Stockmann M - BMC Res Notes (2015)

Dynamic liver function assessment by LiMAx and Indocyanine green plasma disappearance rate in Case 1. Patients’ liver function capacity measured by LiMAx was reduced by 56% after chemotherapy and ICG-PDR by 14%. Despite showing a different course of regeneration, both dynamic liver function tests indicate functional recovery within 8 weeks after cessation of chemotherapy. pre-Chemo – prior to chemotherapy, post-Chemo – after cessation of chemotherapy, 4 weeks – 4 weeks after cessation of chemotherapy, 8 weeks – 8 weeks after cessation of chemotherapy.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4403679&req=5

Fig2: Dynamic liver function assessment by LiMAx and Indocyanine green plasma disappearance rate in Case 1. Patients’ liver function capacity measured by LiMAx was reduced by 56% after chemotherapy and ICG-PDR by 14%. Despite showing a different course of regeneration, both dynamic liver function tests indicate functional recovery within 8 weeks after cessation of chemotherapy. pre-Chemo – prior to chemotherapy, post-Chemo – after cessation of chemotherapy, 4 weeks – 4 weeks after cessation of chemotherapy, 8 weeks – 8 weeks after cessation of chemotherapy.
Mentions: Case 1 reports a 56-year-old male caucasian patient that received 8 cycles of XELOX chemotherapy substituting 5-FU for the oral drug Xeloda. The patient started XELOX chemotherapy with a LiMAx value of 463 μg/kg/h and showed a decrease of functional liver capacity by 56% to 204 μg/kg/h after withdrawal of chemotherapy. ICG-PDR also declined from physiological 19.3%/min prior to chemotherapy to 16.6%/min (Figure 2). In terms of regeneration LiMAx indicates a continuous course regaining liver function after a chemotherapy-free interval of 8 weeks. In contrast ICG-PDR persisted to decrease until 4 weeks after cessation of chemotherapy. However it also restored its value by week 8. Biochemistry showed a peak of serum bilirubin directly after chemotherapy and a temporary decrease in butyrylcholinesterase (BChE) until 8 weeks after withdrawal of XELOX (Table 1).Figure 2

Bottom Line: Chemotherapy-induced liver injury is a well-known phenomenon after neoadjuvant therapy of liver metastasis and contributes to postoperative morbidity and mortality.Both patients yielded a decrease from their initial liver function determined by LiMAx.This could be useful to optimize individual chemotherapy-free interval before liver surgery can be carried out safely.

View Article: PubMed Central - PubMed

Affiliation: Department of General, Visceral and Transplantation Surgery, Charité University Hospital, Augustenburger Platz 1, 13353, Berlin, Germany. jan.bednarsch@charite.de.

ABSTRACT

Background: Chemotherapy-induced liver injury is a well-known phenomenon after neoadjuvant therapy of liver metastasis and contributes to postoperative morbidity and mortality. Still there is no suitable test available to reliably determine functional impairment and hepatic regeneration after chemotherapy.

Case presentation: We report two cases of caucasian patients who underwent repeated liver function assessments using LiMAx (maximum liver function capacity), Indocyanine plasma disappearance rate and biochemical liver function parameters in the course of adjuvant oxaliplatin-based chemotherapy. Both patients yielded a decrease from their initial liver function determined by LiMAx. Liver regeneration assessed functional recovery within 4 weeks in case of mild functional impairment after cessation of chemotherapy or within 8 weeks in case of major functional deterioration. Indocyanine plasma disappearance rate and biochemical parameters remained stable or without a clear trend in case of minor functional impairment. This is the first report using a dynamic liver function test to evaluate the impact and recovery from chemotherapy associated liver injury.

Conclusions: The LiMAx test might be a sensitive tool to diagnose mild functional impairment after chemotherapy when standard liver function tests have remained within normal ranges and might be capable to assess the course of regeneration after chemotherapy. This could be useful to optimize individual chemotherapy-free interval before liver surgery can be carried out safely.

No MeSH data available.


Related in: MedlinePlus