Limits...
Frontal midline theta oscillations during mental arithmetic: effects of stress.

Gärtner M, Grimm S, Bajbouj M - Front Behav Neurosci (2015)

Bottom Line: Additionally, it is well-established that acute stress impairs PFC function, and recent evidence suggests that FMT is decreased under stress.Our results show late-onset, sustained FMT increases during mental arithmetic.Our results suggest that FMT is associated with stimulus independent mental processes during the natural and complex PFC-dependent task of mental arithmetic, and is a possible marker for intact PFC function that is disrupted under stress.

View Article: PubMed Central - PubMed

Affiliation: Affective Neuroscience and Emotion Modulation, Department of Education and Psychology, Freie Universität Berlin Berlin, Germany ; Department of Psychiatry, Charité, Campus Benjamin Franklin Berlin, Germany.

ABSTRACT
Complex cognitive tasks such as mental arithmetic heavily rely on intact, well-coordinated prefrontal cortex (PFC) function. Converging evidence suggests that frontal midline theta (FMT) oscillations play an important role during the execution of such PFC-dependent tasks. Additionally, it is well-established that acute stress impairs PFC function, and recent evidence suggests that FMT is decreased under stress. In this EEG study, we investigated FMT oscillations during a mental arithmetic task that was carried out in a stressful and a neutral control condition. Our results show late-onset, sustained FMT increases during mental arithmetic. In the neutral condition FMT started to increase earlier than in the stress condition. Direct comparison of the conditions quantified this difference by showing stronger FMT increases in the neutral condition in an early time window. Between-subject correlation analysis showed that attenuated FMT under stress was related to slowed reaction times. Our results suggest that FMT is associated with stimulus independent mental processes during the natural and complex PFC-dependent task of mental arithmetic, and is a possible marker for intact PFC function that is disrupted under stress.

No MeSH data available.


Related in: MedlinePlus

Behavioral results and peripheral physiology. (A) Error rates in the mental arithmetic task (B) reaction times in the mental arithmetic task (C) cortisol increases after the mental arithmetic task relative to a baseline measurement (D) affect ratings after the mental arithmetic task relative to baseline ratings. Significant differences between conditions are marked: *p < 0.05; ***p < 0.001.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4403551&req=5

Figure 1: Behavioral results and peripheral physiology. (A) Error rates in the mental arithmetic task (B) reaction times in the mental arithmetic task (C) cortisol increases after the mental arithmetic task relative to a baseline measurement (D) affect ratings after the mental arithmetic task relative to baseline ratings. Significant differences between conditions are marked: *p < 0.05; ***p < 0.001.

Mentions: On average, subjects had an error rate of 11.1% during the experiment (SD = 9.3%), and thus performed significantly better than chance level [50%, T(30) = −23.26, p < 0.001]. The average reaction time was 4.87 s (SD = 0.94 s). Reaction times under stress were slower than in the neutral condition [T(30) = −2.23, p = 0.033], and the number of errors did not differ between conditions [T(30) = −1.05, p = 0.3, see Figures 1A,B]. Cortisol samples were analyzable for 27 out of 31 subjects. Increased cortisol levels under stress indicated a successful moderate stress induction [T(26) = −2.7, p = 0.012]. Furthermore, negative affect ratings were higher in the stress condition [T(30) = −5.69, p < 0.001], while positive affect ratings did not differ significantly [T(30) = 1.5, p = 0.15, see Figures 1C,D].


Frontal midline theta oscillations during mental arithmetic: effects of stress.

Gärtner M, Grimm S, Bajbouj M - Front Behav Neurosci (2015)

Behavioral results and peripheral physiology. (A) Error rates in the mental arithmetic task (B) reaction times in the mental arithmetic task (C) cortisol increases after the mental arithmetic task relative to a baseline measurement (D) affect ratings after the mental arithmetic task relative to baseline ratings. Significant differences between conditions are marked: *p < 0.05; ***p < 0.001.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4403551&req=5

Figure 1: Behavioral results and peripheral physiology. (A) Error rates in the mental arithmetic task (B) reaction times in the mental arithmetic task (C) cortisol increases after the mental arithmetic task relative to a baseline measurement (D) affect ratings after the mental arithmetic task relative to baseline ratings. Significant differences between conditions are marked: *p < 0.05; ***p < 0.001.
Mentions: On average, subjects had an error rate of 11.1% during the experiment (SD = 9.3%), and thus performed significantly better than chance level [50%, T(30) = −23.26, p < 0.001]. The average reaction time was 4.87 s (SD = 0.94 s). Reaction times under stress were slower than in the neutral condition [T(30) = −2.23, p = 0.033], and the number of errors did not differ between conditions [T(30) = −1.05, p = 0.3, see Figures 1A,B]. Cortisol samples were analyzable for 27 out of 31 subjects. Increased cortisol levels under stress indicated a successful moderate stress induction [T(26) = −2.7, p = 0.012]. Furthermore, negative affect ratings were higher in the stress condition [T(30) = −5.69, p < 0.001], while positive affect ratings did not differ significantly [T(30) = 1.5, p = 0.15, see Figures 1C,D].

Bottom Line: Additionally, it is well-established that acute stress impairs PFC function, and recent evidence suggests that FMT is decreased under stress.Our results show late-onset, sustained FMT increases during mental arithmetic.Our results suggest that FMT is associated with stimulus independent mental processes during the natural and complex PFC-dependent task of mental arithmetic, and is a possible marker for intact PFC function that is disrupted under stress.

View Article: PubMed Central - PubMed

Affiliation: Affective Neuroscience and Emotion Modulation, Department of Education and Psychology, Freie Universität Berlin Berlin, Germany ; Department of Psychiatry, Charité, Campus Benjamin Franklin Berlin, Germany.

ABSTRACT
Complex cognitive tasks such as mental arithmetic heavily rely on intact, well-coordinated prefrontal cortex (PFC) function. Converging evidence suggests that frontal midline theta (FMT) oscillations play an important role during the execution of such PFC-dependent tasks. Additionally, it is well-established that acute stress impairs PFC function, and recent evidence suggests that FMT is decreased under stress. In this EEG study, we investigated FMT oscillations during a mental arithmetic task that was carried out in a stressful and a neutral control condition. Our results show late-onset, sustained FMT increases during mental arithmetic. In the neutral condition FMT started to increase earlier than in the stress condition. Direct comparison of the conditions quantified this difference by showing stronger FMT increases in the neutral condition in an early time window. Between-subject correlation analysis showed that attenuated FMT under stress was related to slowed reaction times. Our results suggest that FMT is associated with stimulus independent mental processes during the natural and complex PFC-dependent task of mental arithmetic, and is a possible marker for intact PFC function that is disrupted under stress.

No MeSH data available.


Related in: MedlinePlus