Limits...
Thin film encapsulation for organic light-emitting diodes using inorganic/organic hybrid layers by atomic layer deposition.

Zhang H, Ding H, Wei M, Li C, Wei B, Zhang J - Nanoscale Res Lett (2015)

Bottom Line: A hybrid nanolaminates consisting of Al2O3/ZrO2/alucone (aluminum alkoxides with carbon-containing backbones) grown by atomic layer deposition (ALD) were reported for an encapsulation of organic light-emitting diodes (OLEDs).We found that moisture barrier performance was improved with the increasing of the number of dyads (Al2O3/ZrO2/alucone) and the WVTR reached 8.5 × 10(-5) g/m(2)/day at 25°C, relative humidity (RH) 85%.The half lifetime of a green OLED with the initial luminance of 1,500 cd/m(2) reached 350 h using three pairs of the Al2O3 (15 nm)/ZrO2 (15 nm)/alucone (80 nm) as encapsulation layers.

View Article: PubMed Central - PubMed

Affiliation: Key Laboratory of Advanced Display and System Applications, Ministry of Education, Shanghai University, Yanchang Road 149, Shanghai, 200072 China ; School of Mechatronic Engineering and Automation, Shanghai University, Yanchang Road 149, Shanghai, 200072 China.

ABSTRACT
A hybrid nanolaminates consisting of Al2O3/ZrO2/alucone (aluminum alkoxides with carbon-containing backbones) grown by atomic layer deposition (ALD) were reported for an encapsulation of organic light-emitting diodes (OLEDs). The electrical Ca test in this study was designed to measure the water vapor transmission rate (WVTR) of nanolaminates. We found that moisture barrier performance was improved with the increasing of the number of dyads (Al2O3/ZrO2/alucone) and the WVTR reached 8.5 × 10(-5) g/m(2)/day at 25°C, relative humidity (RH) 85%. The half lifetime of a green OLED with the initial luminance of 1,500 cd/m(2) reached 350 h using three pairs of the Al2O3 (15 nm)/ZrO2 (15 nm)/alucone (80 nm) as encapsulation layers.

No MeSH data available.


Related in: MedlinePlus

AFM picture of thin film. (a) Single Al2O3 film. (b) Al2O3/ZrO2 film. (c) Al2O3/ZrO2/alucone film.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4402680&req=5

Fig3: AFM picture of thin film. (a) Single Al2O3 film. (b) Al2O3/ZrO2 film. (c) Al2O3/ZrO2/alucone film.

Mentions: We have investigated the surface morphology of the encapsulation film using atomic force microscopy (AFM) measurement with a trapping mode on the silicon wafer substrate. Figure 3a,b,c shows the surface topography of the single Al2O3, Al2O3/ZrO2, and Al2O3/ZrO2/alucone, respectively. The root-mean-square (RMS) surface roughness of the single Al2O3, Al2O3/ZrO2, and Al2O3/ZrO2/alucone layers was 1.12, 1.31, and 0.83 nm separately. The lower roughness of Al2O3/ZrO2/alucone film indicates that the introduction of alucone can make the surface smoother. Moreover, we have observed that the surface topography of the Al2O3 film was similar to cloth-like while that of the ZrO2 was grain-like, revealing that the Al2O3 layer is more suitable to deposit directly onto the cathode before the ZrO2 layer.Figure 3


Thin film encapsulation for organic light-emitting diodes using inorganic/organic hybrid layers by atomic layer deposition.

Zhang H, Ding H, Wei M, Li C, Wei B, Zhang J - Nanoscale Res Lett (2015)

AFM picture of thin film. (a) Single Al2O3 film. (b) Al2O3/ZrO2 film. (c) Al2O3/ZrO2/alucone film.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4402680&req=5

Fig3: AFM picture of thin film. (a) Single Al2O3 film. (b) Al2O3/ZrO2 film. (c) Al2O3/ZrO2/alucone film.
Mentions: We have investigated the surface morphology of the encapsulation film using atomic force microscopy (AFM) measurement with a trapping mode on the silicon wafer substrate. Figure 3a,b,c shows the surface topography of the single Al2O3, Al2O3/ZrO2, and Al2O3/ZrO2/alucone, respectively. The root-mean-square (RMS) surface roughness of the single Al2O3, Al2O3/ZrO2, and Al2O3/ZrO2/alucone layers was 1.12, 1.31, and 0.83 nm separately. The lower roughness of Al2O3/ZrO2/alucone film indicates that the introduction of alucone can make the surface smoother. Moreover, we have observed that the surface topography of the Al2O3 film was similar to cloth-like while that of the ZrO2 was grain-like, revealing that the Al2O3 layer is more suitable to deposit directly onto the cathode before the ZrO2 layer.Figure 3

Bottom Line: A hybrid nanolaminates consisting of Al2O3/ZrO2/alucone (aluminum alkoxides with carbon-containing backbones) grown by atomic layer deposition (ALD) were reported for an encapsulation of organic light-emitting diodes (OLEDs).We found that moisture barrier performance was improved with the increasing of the number of dyads (Al2O3/ZrO2/alucone) and the WVTR reached 8.5 × 10(-5) g/m(2)/day at 25°C, relative humidity (RH) 85%.The half lifetime of a green OLED with the initial luminance of 1,500 cd/m(2) reached 350 h using three pairs of the Al2O3 (15 nm)/ZrO2 (15 nm)/alucone (80 nm) as encapsulation layers.

View Article: PubMed Central - PubMed

Affiliation: Key Laboratory of Advanced Display and System Applications, Ministry of Education, Shanghai University, Yanchang Road 149, Shanghai, 200072 China ; School of Mechatronic Engineering and Automation, Shanghai University, Yanchang Road 149, Shanghai, 200072 China.

ABSTRACT
A hybrid nanolaminates consisting of Al2O3/ZrO2/alucone (aluminum alkoxides with carbon-containing backbones) grown by atomic layer deposition (ALD) were reported for an encapsulation of organic light-emitting diodes (OLEDs). The electrical Ca test in this study was designed to measure the water vapor transmission rate (WVTR) of nanolaminates. We found that moisture barrier performance was improved with the increasing of the number of dyads (Al2O3/ZrO2/alucone) and the WVTR reached 8.5 × 10(-5) g/m(2)/day at 25°C, relative humidity (RH) 85%. The half lifetime of a green OLED with the initial luminance of 1,500 cd/m(2) reached 350 h using three pairs of the Al2O3 (15 nm)/ZrO2 (15 nm)/alucone (80 nm) as encapsulation layers.

No MeSH data available.


Related in: MedlinePlus